Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F19%3A39915616" target="_blank" >RIV/00216275:25510/19:39915616 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.tandfonline.com/doi/abs/10.1080/17457300.2019.1690002?journalCode=nics20" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/17457300.2019.1690002?journalCode=nics20</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1080/17457300.2019.1690002" target="_blank" >10.1080/17457300.2019.1690002</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach

  • Popis výsledku v původním jazyce

    This research proposes an assessment and decision support model to use when a driver should be examined about their propensity for traffic accidents, based on an estimation of the driver&apos;s psychological traits. The proposed model was tested on a sample of 305 drivers. Each participant completed four psychological tests: the Barratt Impulsiveness Scale (BIS-11), the Aggressive Driving Behaviour Questionnaire (ADBQ), the Manchester Driver Attitude Questionnaire (DAQ) and the Questionnaire for Self-assessment of Driving Ability. In addition, participants completed an extensive demographic and driving survey. Various fuzzy inference systems were tested and each was defined using the well-known Wang-Mendel method for rule-base definition based on empirical data. For this purpose, a programming code was designed and utilized. Based on the obtained results, it was determined which combination of the considered psychological tests provides the best prediction of a driver&apos;s propensity for traffic accidents. The best of the considered fuzzy inference systems might be used as a decision support tool in various situations, such as in recruitment procedures for professional drivers. The validity of the proposed fuzzy approach was confirmed as its implementation provided better results than from statistics, in this case multiple regression analysis.

  • Název v anglickém jazyce

    Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach

  • Popis výsledku anglicky

    This research proposes an assessment and decision support model to use when a driver should be examined about their propensity for traffic accidents, based on an estimation of the driver&apos;s psychological traits. The proposed model was tested on a sample of 305 drivers. Each participant completed four psychological tests: the Barratt Impulsiveness Scale (BIS-11), the Aggressive Driving Behaviour Questionnaire (ADBQ), the Manchester Driver Attitude Questionnaire (DAQ) and the Questionnaire for Self-assessment of Driving Ability. In addition, participants completed an extensive demographic and driving survey. Various fuzzy inference systems were tested and each was defined using the well-known Wang-Mendel method for rule-base definition based on empirical data. For this purpose, a programming code was designed and utilized. Based on the obtained results, it was determined which combination of the considered psychological tests provides the best prediction of a driver&apos;s propensity for traffic accidents. The best of the considered fuzzy inference systems might be used as a decision support tool in various situations, such as in recruitment procedures for professional drivers. The validity of the proposed fuzzy approach was confirmed as its implementation provided better results than from statistics, in this case multiple regression analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50703 - Transport planning and social aspects of transport (transport engineering to be 2.1)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    International Journal of Injury Control and Safety Promotion

  • ISSN

    1745-7300

  • e-ISSN

  • Svazek periodika

    2019

  • Číslo periodika v rámci svazku

    listopad

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    12

  • Strana od-do

  • Kód UT WoS článku

    000496108600001

  • EID výsledku v databázi Scopus