Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F19%3A39915616" target="_blank" >RIV/00216275:25510/19:39915616 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.tandfonline.com/doi/abs/10.1080/17457300.2019.1690002?journalCode=nics20" target="_blank" >https://www.tandfonline.com/doi/abs/10.1080/17457300.2019.1690002?journalCode=nics20</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1080/17457300.2019.1690002" target="_blank" >10.1080/17457300.2019.1690002</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach
Popis výsledku v původním jazyce
This research proposes an assessment and decision support model to use when a driver should be examined about their propensity for traffic accidents, based on an estimation of the driver's psychological traits. The proposed model was tested on a sample of 305 drivers. Each participant completed four psychological tests: the Barratt Impulsiveness Scale (BIS-11), the Aggressive Driving Behaviour Questionnaire (ADBQ), the Manchester Driver Attitude Questionnaire (DAQ) and the Questionnaire for Self-assessment of Driving Ability. In addition, participants completed an extensive demographic and driving survey. Various fuzzy inference systems were tested and each was defined using the well-known Wang-Mendel method for rule-base definition based on empirical data. For this purpose, a programming code was designed and utilized. Based on the obtained results, it was determined which combination of the considered psychological tests provides the best prediction of a driver's propensity for traffic accidents. The best of the considered fuzzy inference systems might be used as a decision support tool in various situations, such as in recruitment procedures for professional drivers. The validity of the proposed fuzzy approach was confirmed as its implementation provided better results than from statistics, in this case multiple regression analysis.
Název v anglickém jazyce
Modelling driver propensity for traffic accidents: a comparison of multiple regression analysis and fuzzy approach
Popis výsledku anglicky
This research proposes an assessment and decision support model to use when a driver should be examined about their propensity for traffic accidents, based on an estimation of the driver's psychological traits. The proposed model was tested on a sample of 305 drivers. Each participant completed four psychological tests: the Barratt Impulsiveness Scale (BIS-11), the Aggressive Driving Behaviour Questionnaire (ADBQ), the Manchester Driver Attitude Questionnaire (DAQ) and the Questionnaire for Self-assessment of Driving Ability. In addition, participants completed an extensive demographic and driving survey. Various fuzzy inference systems were tested and each was defined using the well-known Wang-Mendel method for rule-base definition based on empirical data. For this purpose, a programming code was designed and utilized. Based on the obtained results, it was determined which combination of the considered psychological tests provides the best prediction of a driver's propensity for traffic accidents. The best of the considered fuzzy inference systems might be used as a decision support tool in various situations, such as in recruitment procedures for professional drivers. The validity of the proposed fuzzy approach was confirmed as its implementation provided better results than from statistics, in this case multiple regression analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
50703 - Transport planning and social aspects of transport (transport engineering to be 2.1)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
International Journal of Injury Control and Safety Promotion
ISSN
1745-7300
e-ISSN
—
Svazek periodika
2019
Číslo periodika v rámci svazku
listopad
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
12
Strana od-do
—
Kód UT WoS článku
000496108600001
EID výsledku v databázi Scopus
—