Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

A Decision Support Model for Transportation Companies to Examine Driver Behavior

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F21%3A39918136" target="_blank" >RIV/00216275:25510/21:39918136 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/9524537" target="_blank" >https://ieeexplore.ieee.org/document/9524537</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/TEM.2021.3102879" target="_blank" >10.1109/TEM.2021.3102879</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    A Decision Support Model for Transportation Companies to Examine Driver Behavior

  • Popis výsledku v původním jazyce

    The entire society, and particularly the transportation companies, has an interest to improve traffic safety. Besides more than 3000 lost lives on the roads every day, there are significant financial consequences of road traffic accidents (RTAs). The purpose of this article is to design an efficient model for providing information about driver propensity for RTAs based on assessing their personality traits. This is achieved by creating a fuzzy inference system (FIS) where inputs are the scores from the implemented psychological instruments and output is the number of RTAs experienced by a driver. To adjust the functioning of FIS to the empirical data, a bee colony optimization (BCO) metaheuristic is applied. In this optimization procedure, we test three approaches for defining the variables of initial FIS and compare their performance. Simulation results show the differences between the considered approaches and, generally, very promising achievements of the proposed algorithm. The best-found FIS reached a 36% improvement of the objective function compared to the starting FIS. This FIS can be used, inter alia, as a decision-making tool in recruitment procedures for professional drivers to assess their propensity for RTAs, by that saving the lives of people and reducing the costs of the companies.

  • Název v anglickém jazyce

    A Decision Support Model for Transportation Companies to Examine Driver Behavior

  • Popis výsledku anglicky

    The entire society, and particularly the transportation companies, has an interest to improve traffic safety. Besides more than 3000 lost lives on the roads every day, there are significant financial consequences of road traffic accidents (RTAs). The purpose of this article is to design an efficient model for providing information about driver propensity for RTAs based on assessing their personality traits. This is achieved by creating a fuzzy inference system (FIS) where inputs are the scores from the implemented psychological instruments and output is the number of RTAs experienced by a driver. To adjust the functioning of FIS to the empirical data, a bee colony optimization (BCO) metaheuristic is applied. In this optimization procedure, we test three approaches for defining the variables of initial FIS and compare their performance. Simulation results show the differences between the considered approaches and, generally, very promising achievements of the proposed algorithm. The best-found FIS reached a 36% improvement of the objective function compared to the starting FIS. This FIS can be used, inter alia, as a decision-making tool in recruitment procedures for professional drivers to assess their propensity for RTAs, by that saving the lives of people and reducing the costs of the companies.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    50203 - Industrial relations

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2021

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Transactions on Engineering Management

  • ISSN

    0018-9391

  • e-ISSN

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    AUG 2021

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    13

  • Strana od-do

    1-13

  • Kód UT WoS článku

    000732624100001

  • EID výsledku v databázi Scopus