Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The impact of socio-demographic indicators on urban shopping trip parameters

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25510%2F24%3A39922547" target="_blank" >RIV/00216275:25510/24:39922547 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://eforum.lntu.edu.ua/index.php/jurnal-mbf/article/view/1522" target="_blank" >https://eforum.lntu.edu.ua/index.php/jurnal-mbf/article/view/1522</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.36910/automash.v2i23.1522" target="_blank" >10.36910/automash.v2i23.1522</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The impact of socio-demographic indicators on urban shopping trip parameters

  • Popis výsledku v původním jazyce

    Understanding the factors influencing a user&apos;s choice of mode and travel time within an urban transport system is a crucial element of urban mobility research. This study focuses on the characteristics of shopping trips, which are less time-regulated compared to work or school commutes but have a significant impact on urban traffic flows. The aim of the research was to identify the connections between socio-demographic indicators and people&apos;s choice of place and time for shopping. An online survey was conducted among residents of Lviv, yielding 152 responses suitable for further analysis. The results indicate that the likelihood of using transport is much higher when shopping at large malls or markets (64.2%) compared to shopping at smaller stores (31.3%). Most shopping trips are made in the afternoon (after 3:00 p.m.). The study of the influence of socio-demographic characteristics on the choice of shopping location and time was carried out using the cross-tabulation method, followed by a χ²-test to verify the hypothesis of variable independence. According to the results, car ownership significantly influences the choice of shopping location, while gender and household income affect the choice of shopping time. A further cluster analysis based on statistically significant indicators, using the k-means method, identified five population clusters with distinct preferences for shopping time and location. These findings are valuable for modeling shopping trip demand and distribution over time and space.

  • Název v anglickém jazyce

    The impact of socio-demographic indicators on urban shopping trip parameters

  • Popis výsledku anglicky

    Understanding the factors influencing a user&apos;s choice of mode and travel time within an urban transport system is a crucial element of urban mobility research. This study focuses on the characteristics of shopping trips, which are less time-regulated compared to work or school commutes but have a significant impact on urban traffic flows. The aim of the research was to identify the connections between socio-demographic indicators and people&apos;s choice of place and time for shopping. An online survey was conducted among residents of Lviv, yielding 152 responses suitable for further analysis. The results indicate that the likelihood of using transport is much higher when shopping at large malls or markets (64.2%) compared to shopping at smaller stores (31.3%). Most shopping trips are made in the afternoon (after 3:00 p.m.). The study of the influence of socio-demographic characteristics on the choice of shopping location and time was carried out using the cross-tabulation method, followed by a χ²-test to verify the hypothesis of variable independence. According to the results, car ownership significantly influences the choice of shopping location, while gender and household income affect the choice of shopping time. A further cluster analysis based on statistically significant indicators, using the k-means method, identified five population clusters with distinct preferences for shopping time and location. These findings are valuable for modeling shopping trip demand and distribution over time and space.

Klasifikace

  • Druh

    J<sub>ost</sub> - Ostatní články v recenzovaných periodicích

  • CEP obor

  • OECD FORD obor

    20100 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2024

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sučasnì tehnologìï v mašinobuduvannì ta transportì

  • ISSN

    2313-5425

  • e-ISSN

  • Svazek periodika

    Neuveden

  • Číslo periodika v rámci svazku

    2(23)

  • Stát vydavatele periodika

    UA - Ukrajina

  • Počet stran výsledku

    8

  • Strana od-do

    27-34

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus