Analysis of Wind Ramp Events Using PCA of 3D Tables of their Conditional Probabilities
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F15%3A39899391" target="_blank" >RIV/00216275:25530/15:39899391 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/EPE.2015.7161121" target="_blank" >http://dx.doi.org/10.1109/EPE.2015.7161121</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EPE.2015.7161121" target="_blank" >10.1109/EPE.2015.7161121</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Analysis of Wind Ramp Events Using PCA of 3D Tables of their Conditional Probabilities
Popis výsledku v původním jazyce
Wind is one of the fastest growing sources of renewable energy. However, its intermittency and stochastic nature often hamper integration of wind-generated energy in electric power networks. The most significant obstacles to efficient wind integration are the wind ramps, sudden changes of wind power output caused by dramatic changes in wind speed. Most ramp prediction methods derive future ramp estimates from forecast power series. This contribution suggests a different approach that would directly analyze wind power time series and other weather parameters to identify specific patterns and dependencies signaling approaching ramp events. In this paper, the 3D tables of ramp events' conditional probabilities are evaluated using principal component analysis. Two different datasets are analyzed. First one contains power production hourly collected from August 2011 to July 2012 on sample wind farm located close to Lethbridge, AB Canada. The other consists of total BPA wind power production
Název v anglickém jazyce
Analysis of Wind Ramp Events Using PCA of 3D Tables of their Conditional Probabilities
Popis výsledku anglicky
Wind is one of the fastest growing sources of renewable energy. However, its intermittency and stochastic nature often hamper integration of wind-generated energy in electric power networks. The most significant obstacles to efficient wind integration are the wind ramps, sudden changes of wind power output caused by dramatic changes in wind speed. Most ramp prediction methods derive future ramp estimates from forecast power series. This contribution suggests a different approach that would directly analyze wind power time series and other weather parameters to identify specific patterns and dependencies signaling approaching ramp events. In this paper, the 3D tables of ramp events' conditional probabilities are evaluated using principal component analysis. Two different datasets are analyzed. First one contains power production hourly collected from August 2011 to July 2012 on sample wind farm located close to Lethbridge, AB Canada. The other consists of total BPA wind power production
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2015 16th International Scientific Conference on Electric Power Engineering, EPE 2015
ISBN
9781467367882
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
158-162
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
New York
Místo konání akce
Kouty nad Desnou
Datum konání akce
20. 5. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—