Sensitivity Analysis of PCA method for Wind Ramp event Detection
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F16%3A39901928" target="_blank" >RIV/00216275:25530/16:39901928 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Sensitivity Analysis of PCA method for Wind Ramp event Detection
Popis výsledku v původním jazyce
Wind is one of the fastest growing sources of green energy in the last few decades. A special attention has been recently focused on the wind ramps, sudden changes in wind power production caused by surges of wind speed (both increases and decreases). In this paper, sensitivity analysis of Principal Component Analysis (PCA) method is preformed on wind speed dataset with the 5 minute time resolution. Principal Component Analysis results can be used to evaluate conditional probability of forthcoming wind ramp event. Advantage of PCA method compared to conventional approaches is that numerical weather prediction model producing wind forecasts is not required. Two important input parameters are analyzed: the wind ramp duration and the wind ramp magnitude, respectively. Results show rapid increase of the first principal component value, when ramp duration is prolonging, nevertheless other two components seems to be insensitive in this case. Boxplots are illustrated for simple comparability of resultant distributions. The number of down ramp events is always lower than the number of up ramps, and with increasing percentage threshold these numbers are decreasing exponentially. Moreover trends of average PCA values for down ramp events are not monotone with significant jumps and drops.
Název v anglickém jazyce
Sensitivity Analysis of PCA method for Wind Ramp event Detection
Popis výsledku anglicky
Wind is one of the fastest growing sources of green energy in the last few decades. A special attention has been recently focused on the wind ramps, sudden changes in wind power production caused by surges of wind speed (both increases and decreases). In this paper, sensitivity analysis of Principal Component Analysis (PCA) method is preformed on wind speed dataset with the 5 minute time resolution. Principal Component Analysis results can be used to evaluate conditional probability of forthcoming wind ramp event. Advantage of PCA method compared to conventional approaches is that numerical weather prediction model producing wind forecasts is not required. Two important input parameters are analyzed: the wind ramp duration and the wind ramp magnitude, respectively. Results show rapid increase of the first principal component value, when ramp duration is prolonging, nevertheless other two components seems to be insensitive in this case. Boxplots are illustrated for simple comparability of resultant distributions. The number of down ramp events is always lower than the number of up ramps, and with increasing percentage threshold these numbers are decreasing exponentially. Moreover trends of average PCA values for down ramp events are not monotone with significant jumps and drops.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 IEEE 16th International Conference on Environment and Electrical Engineering (EEEIC) : proceedings
ISBN
978-1-5090-2320-2
ISSN
—
e-ISSN
—
Počet stran výsledku
8
Strana od-do
123-131
Název nakladatele
IEEE (Institute of Electrical and Electronics Engineers)
Místo vydání
New York
Místo konání akce
Florencie
Datum konání akce
7. 6. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—