Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Refined Max-Pooling and Unpooling Layers for Deep Convolutional Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F16%3A39902263" target="_blank" >RIV/00216275:25530/16:39902263 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Refined Max-Pooling and Unpooling Layers for Deep Convolutional Neural Networks

  • Popis výsledku v původním jazyce

    The main goal of this paper is the introduction of new pooling and unpooling layers suited for deep convolutional neural networks. To this end, a new approximation of max-pooling inversion has been designed. The idea behind this approximation is also introduced in this paper. It is demonstrated on pools of size 2 x 2, with a stride of 2. The widely used technique of switches is combined with interpolation to form the new approximation. For that purpose, an unconventional expression of the switches has been used. Such an expression, allows the right placement of maxima in a reconstruction of original data, as well as interpolation of all unknown values in the reconstruction using the known maxima. The introduced inversion has been implemented into the aforementioned refined pooling and unpooling layers. Since they are suited for deep convolutional networks, behavior of the layers in the feed-forward and backpropagation passes had to be solved. In this context, the introduced conception of the switches has been further developed. Specifically, feed-forward and backpropagation switches are considered in the refined layers. One version of feed-forward and three versions of backpropagation switches have been introduced within this paper. The refined pooling and unpooling layers have been tested on a simple convolutional auto-encoder in order to verify functionality of the conception.

  • Název v anglickém jazyce

    Refined Max-Pooling and Unpooling Layers for Deep Convolutional Neural Networks

  • Popis výsledku anglicky

    The main goal of this paper is the introduction of new pooling and unpooling layers suited for deep convolutional neural networks. To this end, a new approximation of max-pooling inversion has been designed. The idea behind this approximation is also introduced in this paper. It is demonstrated on pools of size 2 x 2, with a stride of 2. The widely used technique of switches is combined with interpolation to form the new approximation. For that purpose, an unconventional expression of the switches has been used. Such an expression, allows the right placement of maxima in a reconstruction of original data, as well as interpolation of all unknown values in the reconstruction using the known maxima. The introduced inversion has been implemented into the aforementioned refined pooling and unpooling layers. Since they are suited for deep convolutional networks, behavior of the layers in the feed-forward and backpropagation passes had to be solved. In this context, the introduced conception of the switches has been further developed. Specifically, feed-forward and backpropagation switches are considered in the refined layers. One version of feed-forward and three versions of backpropagation switches have been introduced within this paper. The refined pooling and unpooling layers have been tested on a simple convolutional auto-encoder in order to verify functionality of the conception.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

    BD - Teorie informace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    Mendel 2016 : 22nd International Conference on Soft Computing

  • ISBN

    978-80-214-5365-4

  • ISSN

    1803-3814

  • e-ISSN

  • Počet stran výsledku

    12

  • Strana od-do

    131-142

  • Název nakladatele

    Vysoké učení technické v Brně

  • Místo vydání

    Brno

  • Místo konání akce

    Brno

  • Datum konání akce

    8. 6. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku