3D Face Recognition Using a Fusion of PCA and ICA Convolution Descriptors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F22%3A50019026" target="_blank" >RIV/62690094:18450/22:50019026 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s11063-022-10761-5" target="_blank" >https://link.springer.com/article/10.1007/s11063-022-10761-5</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11063-022-10761-5" target="_blank" >10.1007/s11063-022-10761-5</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
3D Face Recognition Using a Fusion of PCA and ICA Convolution Descriptors
Popis výsledku v původním jazyce
This paper introduces a hybrid filter bank-based convolutional network to develop a 3D face recognition system in different orientations. The filter banks approach has been mainly used for feature representation. The hybridization in filter banks is primarily generated by a fusion of principal component analysis (PCA) and independent component analysis (ICA) filters. Currently, the deep convolutional neural network (DCNN) has taken a significant step for improving the classification compared to other learning, though the feature learning mechanism of DCNN is not definite. We have used the cascaded linear convolutional network for 3D face classification using a composite filter-based network named PICANet. The networks consist of different layers: convolutional layer, nonlinear processing layer, pooling layer, and classification layer. The main advantage of these networks over DCNN is that the network structure is simple and computationally efficient. We have tested the proposed system on three accessible 3D face databases: Frav3D, GavabDB, and Casia3D. Considering different faces in Frav3D, GavabDB, and Casia3D, the system acquired 96.93%, 87.7%, and 89.21% recognition rates using the proposed hybrid network. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Název v anglickém jazyce
3D Face Recognition Using a Fusion of PCA and ICA Convolution Descriptors
Popis výsledku anglicky
This paper introduces a hybrid filter bank-based convolutional network to develop a 3D face recognition system in different orientations. The filter banks approach has been mainly used for feature representation. The hybridization in filter banks is primarily generated by a fusion of principal component analysis (PCA) and independent component analysis (ICA) filters. Currently, the deep convolutional neural network (DCNN) has taken a significant step for improving the classification compared to other learning, though the feature learning mechanism of DCNN is not definite. We have used the cascaded linear convolutional network for 3D face classification using a composite filter-based network named PICANet. The networks consist of different layers: convolutional layer, nonlinear processing layer, pooling layer, and classification layer. The main advantage of these networks over DCNN is that the network structure is simple and computationally efficient. We have tested the proposed system on three accessible 3D face databases: Frav3D, GavabDB, and Casia3D. Considering different faces in Frav3D, GavabDB, and Casia3D, the system acquired 96.93%, 87.7%, and 89.21% recognition rates using the proposed hybrid network. © 2022, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Processing Letters
ISSN
1370-4621
e-ISSN
1573-773X
Svazek periodika
54
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
21
Strana od-do
3507-3527
Kód UT WoS článku
000761842400003
EID výsledku v databázi Scopus
2-s2.0-85125285049