Reflecting on Imbalance Data Issue when Teaching Performance Measures
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39902712" target="_blank" >RIV/00216275:25530/17:39902712 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-57261-1_4" target="_blank" >http://dx.doi.org/10.1007/978-3-319-57261-1_4</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-57261-1_4" target="_blank" >10.1007/978-3-319-57261-1_4</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Reflecting on Imbalance Data Issue when Teaching Performance Measures
Popis výsledku v původním jazyce
Importance of soft computing methods has continuously grown for many years. Particularly machine learning methods have been paid considerable attention in the business sphere and subsequently within the general public in the last decade. Machine learning and its implementation is the object of interest of many commercial subjects, whether they are small companies or large corporations. Consequently, well-educated experts in the area of machine learning are highly sought after on the job market. Most of the technical universities around the world have incorporated the machine learning into their curricula. However, machine learning is a dynamically evolving area and the curricula should be continuously updated. This paper is intended to support this process. Namely, an imbalance data issue, in context of performance measures for binary classification, is opened, and a teaching method covering this problem is presented. The method has been primary designed for undergraduate and graduate students of technical fields; however, it can be easily adopted in curricula of other fields of study, e.g. medicine, economics, or social sciences.
Název v anglickém jazyce
Reflecting on Imbalance Data Issue when Teaching Performance Measures
Popis výsledku anglicky
Importance of soft computing methods has continuously grown for many years. Particularly machine learning methods have been paid considerable attention in the business sphere and subsequently within the general public in the last decade. Machine learning and its implementation is the object of interest of many commercial subjects, whether they are small companies or large corporations. Consequently, well-educated experts in the area of machine learning are highly sought after on the job market. Most of the technical universities around the world have incorporated the machine learning into their curricula. However, machine learning is a dynamically evolving area and the curricula should be continuously updated. This paper is intended to support this process. Namely, an imbalance data issue, in context of performance measures for binary classification, is opened, and a teaching method covering this problem is presented. The method has been primary designed for undergraduate and graduate students of technical fields; however, it can be easily adopted in curricula of other fields of study, e.g. medicine, economics, or social sciences.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
50302 - Education, special (to gifted persons, those with learning disabilities)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Artificial Intelligence Trends in Intelligent Systems : Proceedings of the 6th Computer Science On-line Conference 2017 (CSOC2017). Vol 1
ISBN
978-3-319-57261-1
ISSN
—
e-ISSN
neuvedeno
Počet stran výsledku
10
Strana od-do
33-42
Název nakladatele
Springer
Místo vydání
Heidelberg
Místo konání akce
Zlín
Datum konání akce
26. 6. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—