Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Usage of Artificial Intelligence and Spectral Analysis for Predicting the Behavior of Stock Prices

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F17%3A39911497" target="_blank" >RIV/00216275:25530/17:39911497 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Usage of Artificial Intelligence and Spectral Analysis for Predicting the Behavior of Stock Prices

  • Popis výsledku v původním jazyce

    In this paper methods of artificial intelligence and spectral analysis to build an algorithm for predicting the behavior of stock prices are applied. Spectral decomposition of a time series was calculated using known methods based on Fourier transformation. The results obtained from periodogram analysis simply provide information about periodicities. Significance analysis was not performed and we worked with four frequencies. This spectral information is then used in clustering of data. Comparison of behavior of price oscillation in clusters was carried out. The presented contribution aims to describe a new algorithm for predicting the behavior of stock prices. The clustering algorithm is based on spectral analysis and SOM. The whole procedure is tested on selected time sections of Dow Jones Industrial Averages, where the algorithm is performed. Results of analysis and final discussion, presented in the Case Study, show that the new method successfully signalizes the trend of stock market prices.

  • Název v anglickém jazyce

    Usage of Artificial Intelligence and Spectral Analysis for Predicting the Behavior of Stock Prices

  • Popis výsledku anglicky

    In this paper methods of artificial intelligence and spectral analysis to build an algorithm for predicting the behavior of stock prices are applied. Spectral decomposition of a time series was calculated using known methods based on Fourier transformation. The results obtained from periodogram analysis simply provide information about periodicities. Significance analysis was not performed and we worked with four frequencies. This spectral information is then used in clustering of data. Comparison of behavior of price oscillation in clusters was carried out. The presented contribution aims to describe a new algorithm for predicting the behavior of stock prices. The clustering algorithm is based on spectral analysis and SOM. The whole procedure is tested on selected time sections of Dow Jones Industrial Averages, where the algorithm is performed. Results of analysis and final discussion, presented in the Case Study, show that the new method successfully signalizes the trend of stock market prices.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10102 - Applied mathematics

Návaznosti výsledku

  • Projekt

  • Návaznosti

    I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace

Ostatní

  • Rok uplatnění

    2017

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    16th Conference on Applied Mathematics APLIMAT 2017 : proceedings

  • ISBN

    978-80-227-4650-2

  • ISSN

  • e-ISSN

    neuvedeno

  • Počet stran výsledku

    11

  • Strana od-do

    1264-1275

  • Název nakladatele

    Spektrum STU

  • Místo vydání

    Bratislava

  • Místo konání akce

    Bratislava

  • Datum konání akce

    31. 1. 2017

  • Typ akce podle státní příslušnosti

    EUR - Evropská akce

  • Kód UT WoS článku