VERSATILE FUNCTION IN GPA
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F21%3A39917356" target="_blank" >RIV/00216275:25530/21:39917356 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.nnw.cz" target="_blank" >http://www.nnw.cz</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/NNW.2020.30.025" target="_blank" >10.14311/NNW.2020.30.025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
VERSATILE FUNCTION IN GPA
Popis výsledku v původním jazyce
The paper, devoted to continuous versatile function application in the Genetic Programming Algorithm (GPA), begins with a discussion of similarities between GPA with versatile function and neural network. Then, the function set influence on GPA efficiency is discussed. In the next part, there is described a hybrid evolutionary algorithm that combines GPA for structure development and Evolutionary Strategy (ES) for parameters and constant optimization; which is herein much more significant than in the standard GPA. There is also discussed the setting of parameters of this hybrid algorithm and due to a different function set. The original idea of a versatile function, which origins come from the area of fuzzy control systems, is formulated and explained. Three different implementations of this versatile function are discussed. On the base of experiments with the hybrid evolutionary algorithm providing symbolic regression task of precomputed Lorenz attractor system data representing its dynamic behaviour; the comparison of three variants of versatile functions was formulated. The paper also presents ways how to set up hybrid evolutionary algorithm parameters like population sizes as well as limits of maximal population numbers for both algorithms: GPA for structural development and nested ES for parameters optimization. The versatile function concept is applicable but it requires the hybrid evolutionary algorithm use as it is explained in the paper.
Název v anglickém jazyce
VERSATILE FUNCTION IN GPA
Popis výsledku anglicky
The paper, devoted to continuous versatile function application in the Genetic Programming Algorithm (GPA), begins with a discussion of similarities between GPA with versatile function and neural network. Then, the function set influence on GPA efficiency is discussed. In the next part, there is described a hybrid evolutionary algorithm that combines GPA for structure development and Evolutionary Strategy (ES) for parameters and constant optimization; which is herein much more significant than in the standard GPA. There is also discussed the setting of parameters of this hybrid algorithm and due to a different function set. The original idea of a versatile function, which origins come from the area of fuzzy control systems, is formulated and explained. Three different implementations of this versatile function are discussed. On the base of experiments with the hybrid evolutionary algorithm providing symbolic regression task of precomputed Lorenz attractor system data representing its dynamic behaviour; the comparison of three variants of versatile functions was formulated. The paper also presents ways how to set up hybrid evolutionary algorithm parameters like population sizes as well as limits of maximal population numbers for both algorithms: GPA for structural development and nested ES for parameters optimization. The versatile function concept is applicable but it requires the hybrid evolutionary algorithm use as it is explained in the paper.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Neural Network World
ISSN
1210-0552
e-ISSN
—
Svazek periodika
30
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
14
Strana od-do
379-392
Kód UT WoS článku
000625072400003
EID výsledku v databázi Scopus
—