Dependency of GPA-ES Algorithm Efficiency on ES Parameters Optimization Strength
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F19%3A39914633" target="_blank" >RIV/00216275:25530/19:39914633 - isvavai.cz</a>
Výsledek na webu
<a href="http://jaec.vn/index.php/JAEC/article/view/226/99" target="_blank" >http://jaec.vn/index.php/JAEC/article/view/226/99</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.25073/jaec.201931.226" target="_blank" >10.25073/jaec.201931.226</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dependency of GPA-ES Algorithm Efficiency on ES Parameters Optimization Strength
Popis výsledku v původním jazyce
In herein presented work, the relation between number of ES iterations and convergence of the whole GPA-ES hybrid algorithm will be studied due to increasing needs to analyze and model large data sets. Evolutionary algorithms are applicable in the areas which are not covered by other artificial intelligence or soft computing techniques like neural networks and deep learning like search of algebraic model of data. The difference between time and algorithmic complexity will be also mentioned as well as the problems of multitasking implementation of GPA, where external influences complicate increasing of GPA efficiency via Pseudo Random Number Generator (PRNG) choice optimization. Hybrid evolutionary algorithms like GPA-ES uses GPA for solution structure development and Evolutionary Strategy (ES) for parameters identification are controlled by many parameters. The most significant are sizes of GPA population and sizes of ES populations related to each particular individual in GPA population. There is also limit of ES algorithm evolutionary cycles. This limit plays two contradictory roles. On one side bigger number of ES iterations means less chance to omit good solution for wrongly identified parameters, on the opposite side large number of ES iterations significantly increases computational time and thus limits application domain of GPA-ES algorithm.
Název v anglickém jazyce
Dependency of GPA-ES Algorithm Efficiency on ES Parameters Optimization Strength
Popis výsledku anglicky
In herein presented work, the relation between number of ES iterations and convergence of the whole GPA-ES hybrid algorithm will be studied due to increasing needs to analyze and model large data sets. Evolutionary algorithms are applicable in the areas which are not covered by other artificial intelligence or soft computing techniques like neural networks and deep learning like search of algebraic model of data. The difference between time and algorithmic complexity will be also mentioned as well as the problems of multitasking implementation of GPA, where external influences complicate increasing of GPA efficiency via Pseudo Random Number Generator (PRNG) choice optimization. Hybrid evolutionary algorithms like GPA-ES uses GPA for solution structure development and Evolutionary Strategy (ES) for parameters identification are controlled by many parameters. The most significant are sizes of GPA population and sizes of ES populations related to each particular individual in GPA population. There is also limit of ES algorithm evolutionary cycles. This limit plays two contradictory roles. On one side bigger number of ES iterations means less chance to omit good solution for wrongly identified parameters, on the opposite side large number of ES iterations significantly increases computational time and thus limits application domain of GPA-ES algorithm.
Klasifikace
Druh
J<sub>ost</sub> - Ostatní články v recenzovaných periodicích
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/EF17_049%2F0008394" target="_blank" >EF17_049/0008394: Spolupráce Univerzity Pardubice a aplikační sféry v aplikačně orientovaném výzkumu lokačních, detekčních a simulačních systémů pro dopravní a přepravní procesy (PosiTrans)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Advanced Engineering and Computation
ISSN
1859-2244
e-ISSN
—
Svazek periodika
3
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
VN - Vietnamská socialistická republika
Počet stran výsledku
8
Strana od-do
304-311
Kód UT WoS článku
—
EID výsledku v databázi Scopus
—