Dependency of GPA-ES Algorithm Efficiency on ES Parameters Optimization Strength
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F20%3A39914577" target="_blank" >RIV/00216275:25530/20:39914577 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-030-14907-9_29" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-030-14907-9_29</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-030-14907-9_29" target="_blank" >10.1007/978-3-030-14907-9_29</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Dependency of GPA-ES Algorithm Efficiency on ES Parameters Optimization Strength
Popis výsledku v původním jazyce
Abstract. In this work, the relation between number of ES iterations and convergence of the whole GPA-ES hybrid algorithm will be studied due to increasing needs to analyze and model large data sets. Evolutionary algorithms are applicable in the areas which are not covered by neural networks and deep learning like search of algebraic model of data. The difference between time and algorithmic complexity will be also mentioned as well as the problems of multitasking implementation of GPA, where external influences complicate increasing of GPA efficiency via Pseudo Random Number Generator (PRNG) choice optimization. Hybrid evolutionary algorithms like GPA-ES uses GPA for solution structure development and Evolutionary Strategy (ES) for parameters identification are controlled by many parameters. The most significant are sizes of GPA popu- lation and sizes of ES populations related to each particular individual in GPA population. There is also limit of ES algorithm evolutionary cycles. This limit plays two contradictory roles. On one side bigger number of ES iterations means less chance to omit good solution for wrongly identified parameters, on the opposite side large number of ES iterations significantly increases computational time and thus limits application domain of GPA-ES algorithm.
Název v anglickém jazyce
Dependency of GPA-ES Algorithm Efficiency on ES Parameters Optimization Strength
Popis výsledku anglicky
Abstract. In this work, the relation between number of ES iterations and convergence of the whole GPA-ES hybrid algorithm will be studied due to increasing needs to analyze and model large data sets. Evolutionary algorithms are applicable in the areas which are not covered by neural networks and deep learning like search of algebraic model of data. The difference between time and algorithmic complexity will be also mentioned as well as the problems of multitasking implementation of GPA, where external influences complicate increasing of GPA efficiency via Pseudo Random Number Generator (PRNG) choice optimization. Hybrid evolutionary algorithms like GPA-ES uses GPA for solution structure development and Evolutionary Strategy (ES) for parameters identification are controlled by many parameters. The most significant are sizes of GPA popu- lation and sizes of ES populations related to each particular individual in GPA population. There is also limit of ES algorithm evolutionary cycles. This limit plays two contradictory roles. On one side bigger number of ES iterations means less chance to omit good solution for wrongly identified parameters, on the opposite side large number of ES iterations significantly increases computational time and thus limits application domain of GPA-ES algorithm.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Lecture Notes in Electrical Engineering. Vol. 554
ISBN
978-3-030-14906-2
ISSN
1876-1100
e-ISSN
1876-1119
Počet stran výsledku
12
Strana od-do
294-302
Název nakladatele
Springer
Místo vydání
Berlin
Místo konání akce
Ostrava
Datum konání akce
11. 9. 2018
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
—