Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216275%3A25530%2F23%3A39920967" target="_blank" >RIV/00216275:25530/23:39920967 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-40725-3_50" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-40725-3_50</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-40725-3_50" target="_blank" >10.1007/978-3-031-40725-3_50</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data
Popis výsledku v původním jazyce
One of the techniques for the analysis of travel patterns on a public transport network is the clustering of the users movements, in order to identify movement patterns. This paper analyses and compares two different methodologies for public transport trajectory clustering: feature clustering and geospatial trajectory clustering. The results of clustering trip features, such as origin, destination, or distance, are compared against the clustering of travelled trajectories by their geospatial characteristics. Algorithms based on density and hierarchical clustering are compared for both methodologies. In geospatial clustering, different metrics to measure distances between trajectories are included in the comparison. Results are evaluated by analysing their quality through the silhouette coefficient and graphical representations of the clusters on the map. The results show that geospatial trajectory clustering offers better quality than feature trajectory clustering. Also, in the case of long and complete trajectories, density clustering using edit distance with real penalty distance outperforms other combinations.
Název v anglickém jazyce
Comparison of Geospatial Trajectory Clustering and Feature Trajectory Clustering for Public Transportation Trip Data
Popis výsledku anglicky
One of the techniques for the analysis of travel patterns on a public transport network is the clustering of the users movements, in order to identify movement patterns. This paper analyses and compares two different methodologies for public transport trajectory clustering: feature clustering and geospatial trajectory clustering. The results of clustering trip features, such as origin, destination, or distance, are compared against the clustering of travelled trajectories by their geospatial characteristics. Algorithms based on density and hierarchical clustering are compared for both methodologies. In geospatial clustering, different metrics to measure distances between trajectories are included in the comparison. Results are evaluated by analysing their quality through the silhouette coefficient and graphical representations of the clusters on the map. The results show that geospatial trajectory clustering offers better quality than feature trajectory clustering. Also, in the case of long and complete trajectories, density clustering using edit distance with real penalty distance outperforms other combinations.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
I - Institucionalni podpora na dlouhodoby koncepcni rozvoj vyzkumne organizace
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Hybrid Artificial Intelligent Systems : 18th International Conference, HAIS 2023, proceedings
ISBN
978-3-031-40724-6
ISSN
0302-9743
e-ISSN
1611-3349
Počet stran výsledku
11
Strana od-do
589-599
Název nakladatele
Springer Nature Switzerland AG
Místo vydání
Cham
Místo konání akce
Salamanca
Datum konání akce
5. 9. 2023
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—