Small-sample probabilistic simulation software tool Freet
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F15%3APU114893" target="_blank" >RIV/00216305:26110/15:PU114893 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Small-sample probabilistic simulation software tool Freet
Popis výsledku v původním jazyce
The objective of the paper is to present methods and software for the efficient statistical, sensitivity and reliability assessment of infrastructure. A special attention is devoted to small-sample simulation techniques which have been developed for theanalysis of computationally intensive problems. The paper shows the possibility of "randomizing" computationally intensive problems in the sense of the Monte Carlo type simulation. In order to keep the number of required simulations at an acceptable level, optimized Latin Hypercube Sampling is utilized. The technique is used for simulation of random variables and random fields. Sensitivity analysis is based on nonparametric rank-order correlation coefficients. Statistical correlation is imposed by the stochastic optimization technique ? simulated annealing. A hierarchical sampling approach has been developed for the extension of the sample size in Latin Hypercube Sampling, enabling the addition of simulations to a current sample set whi
Název v anglickém jazyce
Small-sample probabilistic simulation software tool Freet
Popis výsledku anglicky
The objective of the paper is to present methods and software for the efficient statistical, sensitivity and reliability assessment of infrastructure. A special attention is devoted to small-sample simulation techniques which have been developed for theanalysis of computationally intensive problems. The paper shows the possibility of "randomizing" computationally intensive problems in the sense of the Monte Carlo type simulation. In order to keep the number of required simulations at an acceptable level, optimized Latin Hypercube Sampling is utilized. The technique is used for simulation of random variables and random fields. Sensitivity analysis is based on nonparametric rank-order correlation coefficients. Statistical correlation is imposed by the stochastic optimization technique ? simulated annealing. A hierarchical sampling approach has been developed for the extension of the sample size in Latin Hypercube Sampling, enabling the addition of simulations to a current sample set whi
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
JM - Inženýrské stavitelství
OECD FORD obor
—
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů