Use of censored distribution in the intervals estimator of the extremal index
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F18%3APU130344" target="_blank" >RIV/00216305:26110/18:PU130344 - isvavai.cz</a>
Výsledek na webu
<a href="http://www.cmstatistics.org/CMStatistics2018/docs/BoACFECMStatistics2018.pdf?20181120232255" target="_blank" >http://www.cmstatistics.org/CMStatistics2018/docs/BoACFECMStatistics2018.pdf?20181120232255</a>
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Use of censored distribution in the intervals estimator of the extremal index
Popis výsledku v původním jazyce
From the theory it follows that the local dependence in a stationary series causes clustering of extreme values. Hence, the inference for extremes typically requires proper identification of clusters of high threshold exceedances and estimation of the extremal index which is the primary measure of the local dependence. An intervals estimator of the extremal index based on the distribution of interexceedances times has been previously introduced. Direct application of the limiting distribution to interexceedances times of a stationary series may cause the intervals estimator to be biased toward independence. Several modifications have been proposed including the $K$-gaps likelihood estimator, where $K$ determines the intra- and intercluster spacings. The aim is to introduce a new estimator of the extremal index based on censored distributions that can be viewed as an alternative to the $K$-gaps estimator without using fixed replacements of the intracluster spacings. Properties of the estimator are stud
Název v anglickém jazyce
Use of censored distribution in the intervals estimator of the extremal index
Popis výsledku anglicky
From the theory it follows that the local dependence in a stationary series causes clustering of extreme values. Hence, the inference for extremes typically requires proper identification of clusters of high threshold exceedances and estimation of the extremal index which is the primary measure of the local dependence. An intervals estimator of the extremal index based on the distribution of interexceedances times has been previously introduced. Direct application of the limiting distribution to interexceedances times of a stationary series may cause the intervals estimator to be biased toward independence. Several modifications have been proposed including the $K$-gaps likelihood estimator, where $K$ determines the intra- and intercluster spacings. The aim is to introduce a new estimator of the extremal index based on censored distributions that can be viewed as an alternative to the $K$-gaps estimator without using fixed replacements of the intracluster spacings. Properties of the estimator are stud
Klasifikace
Druh
O - Ostatní výsledky
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů