Variance-based adaptive sequential sampling for Polynomial Chaos Expansion
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F21%3APU141700" target="_blank" >RIV/00216305:26110/21:PU141700 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0045782521004369?dgcid=author" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0045782521004369?dgcid=author</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.cma.2021.114105" target="_blank" >10.1016/j.cma.2021.114105</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Variance-based adaptive sequential sampling for Polynomial Chaos Expansion
Popis výsledku v původním jazyce
his paper presents a novel adaptive sequential sampling method for building Polynomial Chaos Expansion surrogate models. The technique enables one-by-one extension of an experimental design while trying to obtain an optimal sample at each stage of the adaptive sequential surrogate model construction process. The proposed sequential sampling strategy selects from a pool of candidate points by trying to cover the design domain proportionally to their local variance contribution. The proposed criterion for the sample selection balances both exploitation of the surrogate model and exploration of the design domain. The adaptive sequential sampling technique can be used in tandem with any user-defined sampling method, and here was coupled with commonly used Latin Hypercube Sampling and advanced Coherence D-optimal sampling in order to present its general performance. The obtained numerical results confirm its superiority over standard non-sequential approaches in terms of surrogate model accuracy and estimation of the output variance.
Název v anglickém jazyce
Variance-based adaptive sequential sampling for Polynomial Chaos Expansion
Popis výsledku anglicky
his paper presents a novel adaptive sequential sampling method for building Polynomial Chaos Expansion surrogate models. The technique enables one-by-one extension of an experimental design while trying to obtain an optimal sample at each stage of the adaptive sequential surrogate model construction process. The proposed sequential sampling strategy selects from a pool of candidate points by trying to cover the design domain proportionally to their local variance contribution. The proposed criterion for the sample selection balances both exploitation of the surrogate model and exploration of the design domain. The adaptive sequential sampling technique can be used in tandem with any user-defined sampling method, and here was coupled with commonly used Latin Hypercube Sampling and advanced Coherence D-optimal sampling in order to present its general performance. The obtained numerical results confirm its superiority over standard non-sequential approaches in terms of surrogate model accuracy and estimation of the output variance.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20102 - Construction engineering, Municipal and structural engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LTAUSA19058" target="_blank" >LTAUSA19058: Rozvoj teorie a pokročilých algoritmů pro analýzu neurčitostí v inženýrských úlohách (UNCEPRO)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING
ISSN
0045-7825
e-ISSN
1879-2138
Svazek periodika
386
Číslo periodika v rámci svazku
114105
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
25
Strana od-do
1-25
Kód UT WoS článku
000702634800007
EID výsledku v databázi Scopus
2-s2.0-85114047615