STOCHASTIC TRAFFIC DEMAND PROFILE: INTERDAY VARIATION FOR GIVEN TIME AND DAY OF WEEK
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU147355" target="_blank" >RIV/00216305:26110/22:PU147355 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.vut.cz/uk/podpora-publikovani/identifikatory/orcid/registrace" target="_blank" >https://www.vut.cz/uk/podpora-publikovani/identifikatory/orcid/registrace</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.14311/CEJ.2022.04.0048" target="_blank" >10.14311/CEJ.2022.04.0048</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
STOCHASTIC TRAFFIC DEMAND PROFILE: INTERDAY VARIATION FOR GIVEN TIME AND DAY OF WEEK
Popis výsledku v původním jazyce
Traffic demand prediction is one of the major elements of traffic planning and modelling. Traffic surveys routinely estimate the profile of traffic demand on a certain road section, showing the expected evolution of the demand over a day or week. However, the actual demand fluctuates around this value on day-to-day basis and thus can exceed otherwise sufficient capacity and consequently cause congestion due to the capacity drop. This type of traffic demand variability has not yet been properly studied although it can play significant role in traffic modelling and engineering. The relevance of this variability is further increasing with the growing popularity of stochastic traffic models. This paper presents results of a statistical analysis of the demand variability in five-minute aggregation intervals. Normal, lognormal and gamma distributions all show reasonably well fit to the data for individual intervals and often do not differ on statistically significant level. Based on the count of the best fits, the lognormal distribution seems to be most suitable, while the gamma distribution is the most universal and with generally acceptable fit. There appears to be a pattern where certain distributions have better fit in different times of the day and week. The regularity and magnitude of demand probably both play a role in this, as well as the aggregation interval. Two simple models for modelling the variability are proposed for practical applications when there is not enough data to perform similar analysis.
Název v anglickém jazyce
STOCHASTIC TRAFFIC DEMAND PROFILE: INTERDAY VARIATION FOR GIVEN TIME AND DAY OF WEEK
Popis výsledku anglicky
Traffic demand prediction is one of the major elements of traffic planning and modelling. Traffic surveys routinely estimate the profile of traffic demand on a certain road section, showing the expected evolution of the demand over a day or week. However, the actual demand fluctuates around this value on day-to-day basis and thus can exceed otherwise sufficient capacity and consequently cause congestion due to the capacity drop. This type of traffic demand variability has not yet been properly studied although it can play significant role in traffic modelling and engineering. The relevance of this variability is further increasing with the growing popularity of stochastic traffic models. This paper presents results of a statistical analysis of the demand variability in five-minute aggregation intervals. Normal, lognormal and gamma distributions all show reasonably well fit to the data for individual intervals and often do not differ on statistically significant level. Based on the count of the best fits, the lognormal distribution seems to be most suitable, while the gamma distribution is the most universal and with generally acceptable fit. There appears to be a pattern where certain distributions have better fit in different times of the day and week. The regularity and magnitude of demand probably both play a role in this, as well as the aggregation interval. Two simple models for modelling the variability are proposed for practical applications when there is not enough data to perform similar analysis.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20100 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
The Civil Engineering Journal
ISSN
1805-2576
e-ISSN
—
Svazek periodika
31
Číslo periodika v rámci svazku
4
Stát vydavatele periodika
CZ - Česká republika
Počet stran výsledku
11
Strana od-do
636-646
Kód UT WoS článku
000907791700010
EID výsledku v databázi Scopus
—