Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

STOCHASTIC TRAFFIC DEMAND PROFILE: INTERDAY VARIATION FOR GIVEN TIME AND DAY OF WEEK

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F22%3APU147355" target="_blank" >RIV/00216305:26110/22:PU147355 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.vut.cz/uk/podpora-publikovani/identifikatory/orcid/registrace" target="_blank" >https://www.vut.cz/uk/podpora-publikovani/identifikatory/orcid/registrace</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.14311/CEJ.2022.04.0048" target="_blank" >10.14311/CEJ.2022.04.0048</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    STOCHASTIC TRAFFIC DEMAND PROFILE: INTERDAY VARIATION FOR GIVEN TIME AND DAY OF WEEK

  • Popis výsledku v původním jazyce

    Traffic demand prediction is one of the major elements of traffic planning and modelling. Traffic surveys routinely estimate the profile of traffic demand on a certain road section, showing the expected evolution of the demand over a day or week. However, the actual demand fluctuates around this value on day-to-day basis and thus can exceed otherwise sufficient capacity and consequently cause congestion due to the capacity drop. This type of traffic demand variability has not yet been properly studied although it can play significant role in traffic modelling and engineering. The relevance of this variability is further increasing with the growing popularity of stochastic traffic models. This paper presents results of a statistical analysis of the demand variability in five-minute aggregation intervals. Normal, lognormal and gamma distributions all show reasonably well fit to the data for individual intervals and often do not differ on statistically significant level. Based on the count of the best fits, the lognormal distribution seems to be most suitable, while the gamma distribution is the most universal and with generally acceptable fit. There appears to be a pattern where certain distributions have better fit in different times of the day and week. The regularity and magnitude of demand probably both play a role in this, as well as the aggregation interval. Two simple models for modelling the variability are proposed for practical applications when there is not enough data to perform similar analysis.

  • Název v anglickém jazyce

    STOCHASTIC TRAFFIC DEMAND PROFILE: INTERDAY VARIATION FOR GIVEN TIME AND DAY OF WEEK

  • Popis výsledku anglicky

    Traffic demand prediction is one of the major elements of traffic planning and modelling. Traffic surveys routinely estimate the profile of traffic demand on a certain road section, showing the expected evolution of the demand over a day or week. However, the actual demand fluctuates around this value on day-to-day basis and thus can exceed otherwise sufficient capacity and consequently cause congestion due to the capacity drop. This type of traffic demand variability has not yet been properly studied although it can play significant role in traffic modelling and engineering. The relevance of this variability is further increasing with the growing popularity of stochastic traffic models. This paper presents results of a statistical analysis of the demand variability in five-minute aggregation intervals. Normal, lognormal and gamma distributions all show reasonably well fit to the data for individual intervals and often do not differ on statistically significant level. Based on the count of the best fits, the lognormal distribution seems to be most suitable, while the gamma distribution is the most universal and with generally acceptable fit. There appears to be a pattern where certain distributions have better fit in different times of the day and week. The regularity and magnitude of demand probably both play a role in this, as well as the aggregation interval. Two simple models for modelling the variability are proposed for practical applications when there is not enough data to perform similar analysis.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20100 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    The Civil Engineering Journal

  • ISSN

    1805-2576

  • e-ISSN

  • Svazek periodika

    31

  • Číslo periodika v rámci svazku

    4

  • Stát vydavatele periodika

    CZ - Česká republika

  • Počet stran výsledku

    11

  • Strana od-do

    636-646

  • Kód UT WoS článku

    000907791700010

  • EID výsledku v databázi Scopus