Early Fast Cost Estimates of Sewerage Projects Construction Costs Based on Ensembles of Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU149782" target="_blank" >RIV/00216305:26110/23:PU149782 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/2076-3417/13/23/12744" target="_blank" >https://www.mdpi.com/2076-3417/13/23/12744</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/app132312744" target="_blank" >10.3390/app132312744</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Early Fast Cost Estimates of Sewerage Projects Construction Costs Based on Ensembles of Neural Networks
Popis výsledku v původním jazyce
his paper presents research results on the development of an original cost prediction model for construction costs in sewerage projects. The focus is placed on fast cost estimates applicable in the early stages of a project, based on fundamental information available during the initial design phase of sanitary sewers prior to the detailed design. The originality and novelty of this research lie in the application of artificial neural network ensembles, which include a combination of several individual neural networks and the use of simple averaging and generalized averaging approaches. The research resulted in the development of two ensemble-based models, including five neural networks that were trained and tested using data collected from 125 sewerage projects completed in the Czech Republic between 2018 and 2022. The data included information relevant to various aspects of projects and contract costs, updated to account for changes in costs over time. The developed models present satisfactory predictive performance, especially the ensemble model based on simple averaging, which offers prediction accuracy within the range of ±30% (in terms of percentage errors) for over 90% of the training and testing samples. The developed models, based on the ensembles of neural networks, outperformed the benchmark model based on the classical approach and the use of multiple linear regression.
Název v anglickém jazyce
Early Fast Cost Estimates of Sewerage Projects Construction Costs Based on Ensembles of Neural Networks
Popis výsledku anglicky
his paper presents research results on the development of an original cost prediction model for construction costs in sewerage projects. The focus is placed on fast cost estimates applicable in the early stages of a project, based on fundamental information available during the initial design phase of sanitary sewers prior to the detailed design. The originality and novelty of this research lie in the application of artificial neural network ensembles, which include a combination of several individual neural networks and the use of simple averaging and generalized averaging approaches. The research resulted in the development of two ensemble-based models, including five neural networks that were trained and tested using data collected from 125 sewerage projects completed in the Czech Republic between 2018 and 2022. The data included information relevant to various aspects of projects and contract costs, updated to account for changes in costs over time. The developed models present satisfactory predictive performance, especially the ensemble model based on simple averaging, which offers prediction accuracy within the range of ±30% (in terms of percentage errors) for over 90% of the training and testing samples. The developed models, based on the ensembles of neural networks, outperformed the benchmark model based on the classical approach and the use of multiple linear regression.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20101 - Civil engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2023
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Applied Sciences - Basel
ISSN
2076-3417
e-ISSN
—
Svazek periodika
13
Číslo periodika v rámci svazku
23
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
24
Strana od-do
1-24
Kód UT WoS článku
001116777600001
EID výsledku v databázi Scopus
—