Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Early Fast Cost Estimates of Sewerage Projects Construction Costs Based on Ensembles of Neural Networks

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26110%2F23%3APU149782" target="_blank" >RIV/00216305:26110/23:PU149782 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.mdpi.com/2076-3417/13/23/12744" target="_blank" >https://www.mdpi.com/2076-3417/13/23/12744</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.3390/app132312744" target="_blank" >10.3390/app132312744</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Early Fast Cost Estimates of Sewerage Projects Construction Costs Based on Ensembles of Neural Networks

  • Popis výsledku v původním jazyce

    his paper presents research results on the development of an original cost prediction model for construction costs in sewerage projects. The focus is placed on fast cost estimates applicable in the early stages of a project, based on fundamental information available during the initial design phase of sanitary sewers prior to the detailed design. The originality and novelty of this research lie in the application of artificial neural network ensembles, which include a combination of several individual neural networks and the use of simple averaging and generalized averaging approaches. The research resulted in the development of two ensemble-based models, including five neural networks that were trained and tested using data collected from 125 sewerage projects completed in the Czech Republic between 2018 and 2022. The data included information relevant to various aspects of projects and contract costs, updated to account for changes in costs over time. The developed models present satisfactory predictive performance, especially the ensemble model based on simple averaging, which offers prediction accuracy within the range of ±30% (in terms of percentage errors) for over 90% of the training and testing samples. The developed models, based on the ensembles of neural networks, outperformed the benchmark model based on the classical approach and the use of multiple linear regression.

  • Název v anglickém jazyce

    Early Fast Cost Estimates of Sewerage Projects Construction Costs Based on Ensembles of Neural Networks

  • Popis výsledku anglicky

    his paper presents research results on the development of an original cost prediction model for construction costs in sewerage projects. The focus is placed on fast cost estimates applicable in the early stages of a project, based on fundamental information available during the initial design phase of sanitary sewers prior to the detailed design. The originality and novelty of this research lie in the application of artificial neural network ensembles, which include a combination of several individual neural networks and the use of simple averaging and generalized averaging approaches. The research resulted in the development of two ensemble-based models, including five neural networks that were trained and tested using data collected from 125 sewerage projects completed in the Czech Republic between 2018 and 2022. The data included information relevant to various aspects of projects and contract costs, updated to account for changes in costs over time. The developed models present satisfactory predictive performance, especially the ensemble model based on simple averaging, which offers prediction accuracy within the range of ±30% (in terms of percentage errors) for over 90% of the training and testing samples. The developed models, based on the ensembles of neural networks, outperformed the benchmark model based on the classical approach and the use of multiple linear regression.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    20101 - Civil engineering

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2023

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Applied Sciences - Basel

  • ISSN

    2076-3417

  • e-ISSN

  • Svazek periodika

    13

  • Číslo periodika v rámci svazku

    23

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    24

  • Strana od-do

    1-24

  • Kód UT WoS článku

    001116777600001

  • EID výsledku v databázi Scopus