Modeling Consumer Loan Default Prediction Using Ensemble Neural Networks
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86089361" target="_blank" >RIV/61989100:27240/13:86089361 - isvavai.cz</a>
Nalezeny alternativní kódy
RIV/61989100:27740/13:86089361
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICCEEE.2013.6634029" target="_blank" >http://dx.doi.org/10.1109/ICCEEE.2013.6634029</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCEEE.2013.6634029" target="_blank" >10.1109/ICCEEE.2013.6634029</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling Consumer Loan Default Prediction Using Ensemble Neural Networks
Popis výsledku v původním jazyce
In this paper, a loan default prediction model is constricted using three different training algorithms, to train a supervised two-layer feed-forward network to produce the prediction model. But first, two attribute filtering functions were used, resulting in two data sets with reduced attributes and the original data-set. Back propagation based learning algorithms was used for training the network. The neural networks are trained using real world credit application cases from a German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon, which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation,Levenberg-Marquardt algorithm, One-step secant backpropagation (SCG, LM and OSS) and an ensemble of SCG, LM and OSS. Empirical results indicate that training algorithms improve the design of a loan default prediction model and ensemble mo
Název v anglickém jazyce
Modeling Consumer Loan Default Prediction Using Ensemble Neural Networks
Popis výsledku anglicky
In this paper, a loan default prediction model is constricted using three different training algorithms, to train a supervised two-layer feed-forward network to produce the prediction model. But first, two attribute filtering functions were used, resulting in two data sets with reduced attributes and the original data-set. Back propagation based learning algorithms was used for training the network. The neural networks are trained using real world credit application cases from a German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon, which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation,Levenberg-Marquardt algorithm, One-step secant backpropagation (SCG, LM and OSS) and an ensemble of SCG, LM and OSS. Empirical results indicate that training algorithms improve the design of a loan default prediction model and ensemble mo
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2013 International Conference on Computer, Electrical and Electronics Engineering: 'Research Makes a Difference', ICCEEE 2013
ISBN
978-1-4673-6231-3
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
719-724
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Khartoum
Datum konání akce
26. 8. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—