Modeling consumer loan default prediction using neural netware
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F61989100%3A27240%2F13%3A86092836" target="_blank" >RIV/61989100:27240/13:86092836 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1109/ICCEEE.2013.6633940" target="_blank" >http://dx.doi.org/10.1109/ICCEEE.2013.6633940</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCEEE.2013.6633940" target="_blank" >10.1109/ICCEEE.2013.6633940</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Modeling consumer loan default prediction using neural netware
Popis výsledku v původním jazyce
In this paper a loan default prediction model was constricted using two attribute detection functions, resulting in two data-sets with reduced attributes and the original data-set. A supervised two-layer feed-forward network, with sigmoid hidden neurons and output neurons is used to produce the prediction model. Back propagation learning algorithm was used for the network. Furthermore three different training algorithms were used to train the neural networks. The neural networks are trained using real world credit application cases from the German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation, Levenberg-Marquardt algorithm and One-step secant backpropagation (SCG, LM and OSS). This study show that although there is no great difference between LM and SCG but still LM gives better results. The attribute reduction function used helped to produced models quickly and more accurately. 2013 IEEE.
Název v anglickém jazyce
Modeling consumer loan default prediction using neural netware
Popis výsledku anglicky
In this paper a loan default prediction model was constricted using two attribute detection functions, resulting in two data-sets with reduced attributes and the original data-set. A supervised two-layer feed-forward network, with sigmoid hidden neurons and output neurons is used to produce the prediction model. Back propagation learning algorithm was used for the network. Furthermore three different training algorithms were used to train the neural networks. The neural networks are trained using real world credit application cases from the German bank datasets which has 1000 cases; each case with 24 numerical attributes; upon which the decision is based. The aim of this paper was to compare between the resulting models produced from using different training algorithms, scaled conjugate gradient backpropagation, Levenberg-Marquardt algorithm and One-step secant backpropagation (SCG, LM and OSS). This study show that although there is no great difference between LM and SCG but still LM gives better results. The attribute reduction function used helped to produced models quickly and more accurately. 2013 IEEE.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
IN - Informatika
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2013
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings - 2013 International Conference on Computer, Electrical and Electronics Engineering: 'Research Makes a Difference', ICCEEE 2013
ISBN
978-1-4673-6231-3
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
239-243
Název nakladatele
IEEE
Místo vydání
New York
Místo konání akce
Khartoum
Datum konání akce
26. 8. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000344372100042