Stochastic Heuristic Methods for the Steiner Tree Problem in Graphs
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F01%3APU23161" target="_blank" >RIV/00216305:26210/01:PU23161 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
čeština
Název v původním jazyce
Stochastic Heuristic Methods for the Steiner Tree Problem in Graphs
Popis výsledku v původním jazyce
The Steiner tree problem in graphs (SPG) is concerned with connecting a subset of vertices at minimal cost. More precisely, given an undirected connected graph G=(V,E) with vertex set V, edge set E, nonnegative weights associated with the edges, and a subset B of V (called customer vertices or terminals), the problem is to find a subgraph, T, which connects the vertices in B so that the sum of the weights of the edges in T is minimized. It is obvious that the solution is always a tree and it is called aa minimal Steiner tree for B in G. Applications of the SPG are frequently found in the layout of connection structures in networks and circuit design. Their common feature is that of connecting together a set of terminals (communications sites or circuits components) by a network of minimal total length. The contribution presents an application of stochastic heuristic methods in a combination with approximate algorithms and compares their effectiveness using standard benchmarks from OR-l
Název v anglickém jazyce
Stochastic Heuristic Methods for the Steiner Tree Problem in Graphs
Popis výsledku anglicky
The Steiner tree problem in graphs (SPG) is concerned with connecting a subset of vertices at minimal cost. More precisely, given an undirected connected graph G=(V,E) with vertex set V, edge set E, nonnegative weights associated with the edges, and a subset B of V (called customer vertices or terminals), the problem is to find a subgraph, T, which connects the vertices in B so that the sum of the weights of the edges in T is minimized. It is obvious that the solution is always a tree and it is called aa minimal Steiner tree for B in G. Applications of the SPG are frequently found in the layout of connection structures in networks and circuit design. Their common feature is that of connecting together a set of terminals (communications sites or circuits components) by a network of minimal total length. The contribution presents an application of stochastic heuristic methods in a combination with approximate algorithms and compares their effectiveness using standard benchmarks from OR-l
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
BB - Aplikovaná statistika, operační výzkum
OECD FORD obor
—
Návaznosti výsledku
Projekt
—
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2001
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Abstracts of the European Operational Research Conference EURO 2001
ISBN
—
ISSN
—
e-ISSN
—
Počet stran výsledku
1
Strana od-do
74-74
Název nakladatele
Netherlands Society for Operations Research
Místo vydání
Rotterdam
Místo konání akce
Rotterdam
Datum konání akce
9. 7. 2001
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—