Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F68407700%3A21240%2F17%3A00313779" target="_blank" >RIV/68407700:21240/17:00313779 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007%2Fs00453-016-0249-1" target="_blank" >https://link.springer.com/article/10.1007%2Fs00453-016-0249-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00453-016-0249-1" target="_blank" >10.1007/s00453-016-0249-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices
Popis výsledku v původním jazyce
In the Steiner Tree problem one is given an undirected graph, a subset T of its vertices, and an integer k and the question is whether there is a connected subgraph of the given graph containing all the vertices of T and at most k other vertices. The vertices in the subset T are called terminals and the other vertices are called Steiner vertices. Recently, Pilipczuk et al. (55th IEEE Annual Symposium on Foundations of Computer Science, FOCS, 2014) gave a polynomial kernel for Steiner Tree in planar graphs and graphs of bounded genus, when parameterized by , the total number of vertices in the constructed subgraph. In this paper we present several polynomial time applicable reduction rules for Steiner Tree in graphs of bounded genus. In an instance reduced with respect to the presented reduction rules, the number of terminals |T| is at most cubic in the number of other vertices k in the subgraph. Hence, using and improving the result of Pilipczuk et al., we give a polynomial kernel for Steiner Tree in graphs of bounded genus for the parameterization by the number k of Steiner vertices in the solution. We give better bounds for Steiner Tree in planar graphs.
Název v anglickém jazyce
Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices
Popis výsledku anglicky
In the Steiner Tree problem one is given an undirected graph, a subset T of its vertices, and an integer k and the question is whether there is a connected subgraph of the given graph containing all the vertices of T and at most k other vertices. The vertices in the subset T are called terminals and the other vertices are called Steiner vertices. Recently, Pilipczuk et al. (55th IEEE Annual Symposium on Foundations of Computer Science, FOCS, 2014) gave a polynomial kernel for Steiner Tree in planar graphs and graphs of bounded genus, when parameterized by , the total number of vertices in the constructed subgraph. In this paper we present several polynomial time applicable reduction rules for Steiner Tree in graphs of bounded genus. In an instance reduced with respect to the presented reduction rules, the number of terminals |T| is at most cubic in the number of other vertices k in the subgraph. Hence, using and improving the result of Pilipczuk et al., we give a polynomial kernel for Steiner Tree in graphs of bounded genus for the parameterization by the number k of Steiner vertices in the solution. We give better bounds for Steiner Tree in planar graphs.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
<a href="/cs/project/GP14-13017P" target="_blank" >GP14-13017P: Parametrizované algoritmy pro základní síťové problémy spojené se souvislostí</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Algorithmica
ISSN
0178-4617
e-ISSN
1432-0541
Svazek periodika
79
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
22
Strana od-do
189-210
Kód UT WoS článku
000405908000009
EID výsledku v databázi Scopus
2-s2.0-84997693845