Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Neural Network Based Reactive Navigation for Mobile Robot in Dynamic Environment

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F13%3APU106668" target="_blank" >RIV/00216305:26210/13:PU106668 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/61388998:_____/13:00421678

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Neural Network Based Reactive Navigation for Mobile Robot in Dynamic Environment

  • Popis výsledku v původním jazyce

    When mobile robots are used among people, the best accepted motion related behavior is a human-like motion of the robot. Such behavior is difficult to obtain with commonly used finite state machine based planners, but can easily be evoked when human controls the robot. The paper presents the way of transforming such knowledge from human controller to reactive planner in the robot navigation module. Reactive planner is based on machine learning, neural networks in particular. The planner consists of twoseparate neural networks, one serving as predictor of dynamic obstacles behavior, second one serving as the reactive planner itself, producing desirable actions of the robot both in terms of velocity and direction. Planner was verified on real robot producing human-like behavior when used in real environment.

  • Název v anglickém jazyce

    Neural Network Based Reactive Navigation for Mobile Robot in Dynamic Environment

  • Popis výsledku anglicky

    When mobile robots are used among people, the best accepted motion related behavior is a human-like motion of the robot. Such behavior is difficult to obtain with commonly used finite state machine based planners, but can easily be evoked when human controls the robot. The paper presents the way of transforming such knowledge from human controller to reactive planner in the robot navigation module. Reactive planner is based on machine learning, neural networks in particular. The planner consists of twoseparate neural networks, one serving as predictor of dynamic obstacles behavior, second one serving as the reactive planner itself, producing desirable actions of the robot both in terms of velocity and direction. Planner was verified on real robot producing human-like behavior when used in real environment.

Klasifikace

  • Druh

    J<sub>x</sub> - Nezařazeno - Článek v odborném periodiku (Jimp, Jsc a Jost)

  • CEP obor

    JD - Využití počítačů, robotika a její aplikace

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2013

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Solid State Phenomena

  • ISSN

    1012-0394

  • e-ISSN

  • Svazek periodika

    2013

  • Číslo periodika v rámci svazku

    198

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    6

  • Strana od-do

    108-113

  • Kód UT WoS článku

  • EID výsledku v databázi Scopus