The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU121833" target="_blank" >RIV/00216305:26210/17:PU121833 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/content/pdf/10.1007%2Fs11071-016-3090-9.pdf" target="_blank" >https://link.springer.com/content/pdf/10.1007%2Fs11071-016-3090-9.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s11071-016-3090-9" target="_blank" >10.1007/s11071-016-3090-9</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system
Popis výsledku v původním jazyce
This paper discusses stability conditions and a chaotic behavior of the Lorenz dynamical system involving the Caputo fractional derivative of orders between 0 and 1. We study these problems with respect to a general (not specified) value of the Rayleigh number as a varying control parameter. Such a bifurcation analysis is known for the classical Lorenz system; we show that analysis of its fractional extension can yield different conclusions. In particular, we theoretically derive (and numerically illustrate) that nontrivial equilibria of the fractional Lorenz system become locally asymptotically stable for all values of the Rayleigh number large enough, which contradicts the behavior known from the classical case. As a main proof tool, we derive the optimal Routh–Hurwitz conditions of fractional type. Beside it, we perform other bifurcation investigations of the fractional Lorenz system, especially those documenting its transition from stability to chaotic behavior.
Název v anglickém jazyce
The Routh–Hurwitz conditions of fractional type in stability analysis of the Lorenz dynamical system
Popis výsledku anglicky
This paper discusses stability conditions and a chaotic behavior of the Lorenz dynamical system involving the Caputo fractional derivative of orders between 0 and 1. We study these problems with respect to a general (not specified) value of the Rayleigh number as a varying control parameter. Such a bifurcation analysis is known for the classical Lorenz system; we show that analysis of its fractional extension can yield different conclusions. In particular, we theoretically derive (and numerically illustrate) that nontrivial equilibria of the fractional Lorenz system become locally asymptotically stable for all values of the Rayleigh number large enough, which contradicts the behavior known from the classical case. As a main proof tool, we derive the optimal Routh–Hurwitz conditions of fractional type. Beside it, we perform other bifurcation investigations of the fractional Lorenz system, especially those documenting its transition from stability to chaotic behavior.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1202" target="_blank" >LO1202: NETME CENTRE PLUS</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
NONLINEAR DYNAMICS
ISSN
0924-090X
e-ISSN
1573-269X
Svazek periodika
87
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
939-954
Kód UT WoS článku
000392293200017
EID výsledku v databázi Scopus
2-s2.0-84991284340