An asymptotic analysis of nonoscillatory solutions of q-difference equations via q-regular variation
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F17%3APU123809" target="_blank" >RIV/00216305:26210/17:PU123809 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1016/j.jmaa.2017.05.034" target="_blank" >https://doi.org/10.1016/j.jmaa.2017.05.034</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.jmaa.2017.05.034" target="_blank" >10.1016/j.jmaa.2017.05.034</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An asymptotic analysis of nonoscillatory solutions of q-difference equations via q-regular variation
Popis výsledku v původním jazyce
We do a thorough asymptotic analysis of nonoscillatory solutions of the $q$-difference equation $D_q(r(t)D_q y(t))+p(t)y(qt)=0$ considered on the lattice ${q^k:kinmathbb{N}_0}$, $q>1$. We classify the solutions according to various aspects that take into account their asymptotic behavior. We show relations among the asymptotic classes. For every positive solution we establish asymptotic formulae. Several discrepancies are revealed, when comparing the results with their existing differential equations or difference equations counterparts; however, it should be noted that many of our observations in the $q$-case have not their continuous or discrete analogies yet. Important roles in our considerations are played by the theory of $q$-regular variation and various transformations. The results are illustrated by examples.
Název v anglickém jazyce
An asymptotic analysis of nonoscillatory solutions of q-difference equations via q-regular variation
Popis výsledku anglicky
We do a thorough asymptotic analysis of nonoscillatory solutions of the $q$-difference equation $D_q(r(t)D_q y(t))+p(t)y(qt)=0$ considered on the lattice ${q^k:kinmathbb{N}_0}$, $q>1$. We classify the solutions according to various aspects that take into account their asymptotic behavior. We show relations among the asymptotic classes. For every positive solution we establish asymptotic formulae. Several discrepancies are revealed, when comparing the results with their existing differential equations or difference equations counterparts; however, it should be noted that many of our observations in the $q$-case have not their continuous or discrete analogies yet. Important roles in our considerations are played by the theory of $q$-regular variation and various transformations. The results are illustrated by examples.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10101 - Pure mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
Journal of Mathematical Analysis and Application
ISSN
0022-247X
e-ISSN
1096-0813
Svazek periodika
454
Číslo periodika v rámci svazku
2
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
54
Strana od-do
829-882
Kód UT WoS článku
000404425000023
EID výsledku v databázi Scopus
2-s2.0-85019631990