Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Biomechanical performance of cranial implants with different thicknesses and material properties: A finite element study

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F19%3APU131987" target="_blank" >RIV/00216305:26210/19:PU131987 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0010482519301234?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0010482519301234?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.compbiomed.2019.04.016" target="_blank" >10.1016/j.compbiomed.2019.04.016</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Biomechanical performance of cranial implants with different thicknesses and material properties: A finite element study

  • Popis výsledku v původním jazyce

    This study investigated the effect of implant thickness and material on deformation and stress distribution within different components of cranial implant assemblies. Using the finite element method, two cranial implants, differing in size and shape, and thicknesses (1, 2, 3 and 4 mm, respectively), were simulated under three loading scenarios. The implant assembly model included the detailed geometries of the mini-plates and micro-screws and was simulated using a sub-modeling approach. Statistical assessments based on the Design of Experiment methodology and on multiple regression analysis revealed that peak stresses in the components are influenced primarily by implant thickness, while the effect of implant material is secondary. On the contrary, the implant deflection is influenced predominantly by implant material followed by implant thickness. The highest values of deformation under a 50N load were observed in the thinnest (1 mm) polymethyl methacrylate implant (Small defect: 0.296 mm; Large defect: 0.390 mm). The thinnest Polymethyl methacrylate and Polyether Ether Ketone implants also generated stresses in the implants that can potentially breach the materials' yield limit. In terms of stress distribution, the change of implant thickness had a more significant impact on the implant performance than the change of Young's modulus of the implant material. The results indicated that the stresses are concentrated in the locations of fixation; therefore, the detailed models of mini-plates and micro-screws implemented in the finite element simulation provided a better insight into the mechanical performance of the implant-skull system.

  • Název v anglickém jazyce

    Biomechanical performance of cranial implants with different thicknesses and material properties: A finite element study

  • Popis výsledku anglicky

    This study investigated the effect of implant thickness and material on deformation and stress distribution within different components of cranial implant assemblies. Using the finite element method, two cranial implants, differing in size and shape, and thicknesses (1, 2, 3 and 4 mm, respectively), were simulated under three loading scenarios. The implant assembly model included the detailed geometries of the mini-plates and micro-screws and was simulated using a sub-modeling approach. Statistical assessments based on the Design of Experiment methodology and on multiple regression analysis revealed that peak stresses in the components are influenced primarily by implant thickness, while the effect of implant material is secondary. On the contrary, the implant deflection is influenced predominantly by implant material followed by implant thickness. The highest values of deformation under a 50N load were observed in the thinnest (1 mm) polymethyl methacrylate implant (Small defect: 0.296 mm; Large defect: 0.390 mm). The thinnest Polymethyl methacrylate and Polyether Ether Ketone implants also generated stresses in the implants that can potentially breach the materials' yield limit. In terms of stress distribution, the change of implant thickness had a more significant impact on the implant performance than the change of Young's modulus of the implant material. The results indicated that the stresses are concentrated in the locations of fixation; therefore, the detailed models of mini-plates and micro-screws implemented in the finite element simulation provided a better insight into the mechanical performance of the implant-skull system.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10602 - Biology (theoretical, mathematical, thermal, cryobiology, biological rhythm), Evolutionary biology

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA16-08944S" target="_blank" >GA16-08944S: Biomechanická studie interakce kraniomaxilofaciálního implantátu s kostí s využitím personalizovaného přístupu a víceúrovňového výpočtového modelování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    COMPUTERS IN BIOLOGY AND MEDICINE

  • ISSN

    0010-4825

  • e-ISSN

    1879-0534

  • Svazek periodika

    neuveden

  • Číslo periodika v rámci svazku

    109

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    10

  • Strana od-do

    43-52

  • Kód UT WoS článku

    000472590500005

  • EID výsledku v databázi Scopus

    2-s2.0-85064648863