Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F20%3APU136929" target="_blank" >RIV/00216305:26210/20:PU136929 - isvavai.cz</a>

  • Nalezeny alternativní kódy

    RIV/00216208:11110/20:10426396 RIV/68378271:_____/20:00563767

  • Výsledek na webu

    <a href="https://pubs.acs.org/doi/10.1021/acssensors.0c00756" target="_blank" >https://pubs.acs.org/doi/10.1021/acssensors.0c00756</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1021/acssensors.0c00756" target="_blank" >10.1021/acssensors.0c00756</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air

  • Popis výsledku v původním jazyce

    Nanomechanical resonators are routinely used for identification of various analytes like biological and chemical molecules, viruses or bacteria cells from the frequency response. This identification based on the multimode frequency shift measurement is limited to analyte of mass that is much lighter than the resonator mass; hence the analyte can be modeled as a point particle and, as such, its stiffness and nontrivial binding effects like surface stress can be neglected. For heavy analytes (> MDa) this identification, however, leads to incorrectly estimated masses. Here, by using a well-known frequency response of the nanomechanical resonator in air, we show that the heavy analyte can be identified without a need for highly challenging analysis of the analyte position, stiffness and/or binding effects just by monitoring changes in quality factor of a single harmonic frequency. Theory with a detailed procedure of mass extraction from quality factor is developed. In air, the quality factor depends on analyte mass and known air damping, while impact of the intrinsic dissipation is negligibly small. We find that the highest mass sensitivity (for considered resonator dimensions ~zg) can be achieved for rarely measured lateral mode, whereas the commonly detected flexural mode yields the lowest sensitivity. Validity of proposed procedure is confirmed by extracting mass of heavy analytes (GDa) made of protein and E. coli bacteria cells, and the ragweed pollen nanoparticle adsorbed on surface of the nanomechanical resonator(s) in air, of which the required changes in quality factor were previously experimentally measured, and by using numerical simulations. Our results open a doorway for rapid detection of viruses and bacteria cells using standard nanomechanical mass sensors.

  • Název v anglickém jazyce

    Mass Spectrometry of Heavy Analytes and Large Biological Aggregates by Monitoring Changes in the Quality Factor of Nanomechanical Resonators in Air

  • Popis výsledku anglicky

    Nanomechanical resonators are routinely used for identification of various analytes like biological and chemical molecules, viruses or bacteria cells from the frequency response. This identification based on the multimode frequency shift measurement is limited to analyte of mass that is much lighter than the resonator mass; hence the analyte can be modeled as a point particle and, as such, its stiffness and nontrivial binding effects like surface stress can be neglected. For heavy analytes (> MDa) this identification, however, leads to incorrectly estimated masses. Here, by using a well-known frequency response of the nanomechanical resonator in air, we show that the heavy analyte can be identified without a need for highly challenging analysis of the analyte position, stiffness and/or binding effects just by monitoring changes in quality factor of a single harmonic frequency. Theory with a detailed procedure of mass extraction from quality factor is developed. In air, the quality factor depends on analyte mass and known air damping, while impact of the intrinsic dissipation is negligibly small. We find that the highest mass sensitivity (for considered resonator dimensions ~zg) can be achieved for rarely measured lateral mode, whereas the commonly detected flexural mode yields the lowest sensitivity. Validity of proposed procedure is confirmed by extracting mass of heavy analytes (GDa) made of protein and E. coli bacteria cells, and the ragweed pollen nanoparticle adsorbed on surface of the nanomechanical resonator(s) in air, of which the required changes in quality factor were previously experimentally measured, and by using numerical simulations. Our results open a doorway for rapid detection of viruses and bacteria cells using standard nanomechanical mass sensors.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21001 - Nano-materials (production and properties)

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/GA17-08153S" target="_blank" >GA17-08153S: Nové materiálové architektury pro SMART piezokeramické elektromechanické měniče</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2020

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    ACS Sensors

  • ISSN

    2379-3694

  • e-ISSN

  • Svazek periodika

    5

  • Číslo periodika v rámci svazku

    7

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    8

  • Strana od-do

    2128-2135

  • Kód UT WoS článku

    000573554900034

  • EID výsledku v databázi Scopus

    2-s2.0-85088608259