Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Resolving measurement of large (similar to GDa) chemical/biomolecule complexes with multimode nanomechanical resonators

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU143664" target="_blank" >RIV/00216305:26210/22:PU143664 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://www.sciencedirect.com/science/article/pii/S0925400521016300?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0925400521016300?via%3Dihub</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1016/j.snb.2021.131062" target="_blank" >10.1016/j.snb.2021.131062</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Resolving measurement of large (similar to GDa) chemical/biomolecule complexes with multimode nanomechanical resonators

  • Popis výsledku v původním jazyce

    Mass sensing by nanomechanical resonators can be routinely performed for analytes of mass ranging from kDa to tens of MDa. Measurement of the heavier analytes (up to hundreds of GDa) that are relevant to viruses, and many biological and chemical complexes, still remains one of the main challenges to be solved. Some studies propose the heavy analyte identification by accounting for its mass, stiffness and binding effects. However, the necessity of using the sophisticated computational tools complicates their widespread use in the nanomechanical mass spectrometry. Here, we report on the heavy analyte mass spectrometry (similar to GDa) using the multimode nanomechanical resonators, which is directly applicable to analytes of arbitrary mass, stiffness and dimensions. This identification, based on the simultaneous measurement of the multiple by analyte induced resonant frequency shifts, only requires the analyte to resonator mass ratio between 0.001 and 0.02. We show that the analyte stiffness and binding effects must be considered for the lower mass ratios (< 0.001), while for the higher mass ratios (> 0.02) the inaccuracies in determined mass are independent of both the analyte stiffness and binding effects, and increase with the mass of analyte. Validity of present results have been demonstrated by comparing predictions with the recent experimental measurements performed on the micro-/nanomechanical resonator-based mass spectrometers. Our findings, together with the provided software, which enables an easily accessible determination of the effects of analyte properties on the frequency response, present a novel paradigm in a design of the nanomechanical resonators for mass sensing in GDa range.

  • Název v anglickém jazyce

    Resolving measurement of large (similar to GDa) chemical/biomolecule complexes with multimode nanomechanical resonators

  • Popis výsledku anglicky

    Mass sensing by nanomechanical resonators can be routinely performed for analytes of mass ranging from kDa to tens of MDa. Measurement of the heavier analytes (up to hundreds of GDa) that are relevant to viruses, and many biological and chemical complexes, still remains one of the main challenges to be solved. Some studies propose the heavy analyte identification by accounting for its mass, stiffness and binding effects. However, the necessity of using the sophisticated computational tools complicates their widespread use in the nanomechanical mass spectrometry. Here, we report on the heavy analyte mass spectrometry (similar to GDa) using the multimode nanomechanical resonators, which is directly applicable to analytes of arbitrary mass, stiffness and dimensions. This identification, based on the simultaneous measurement of the multiple by analyte induced resonant frequency shifts, only requires the analyte to resonator mass ratio between 0.001 and 0.02. We show that the analyte stiffness and binding effects must be considered for the lower mass ratios (< 0.001), while for the higher mass ratios (> 0.02) the inaccuracies in determined mass are independent of both the analyte stiffness and binding effects, and increase with the mass of analyte. Validity of present results have been demonstrated by comparing predictions with the recent experimental measurements performed on the micro-/nanomechanical resonator-based mass spectrometers. Our findings, together with the provided software, which enables an easily accessible determination of the effects of analyte properties on the frequency response, present a novel paradigm in a design of the nanomechanical resonators for mass sensing in GDa range.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    21101 - Food and beverages

Návaznosti výsledku

  • Projekt

    Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)

Ostatní

  • Rok uplatnění

    2022

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    Sensors and Actuators B: Chemical

  • ISSN

    0925-4005

  • e-ISSN

  • Svazek periodika

    353

  • Číslo periodika v rámci svazku

    15

  • Stát vydavatele periodika

    CH - Švýcarská konfederace

  • Počet stran výsledku

    9

  • Strana od-do

    1-9

  • Kód UT WoS článku

    000744546700004

  • EID výsledku v databázi Scopus

    2-s2.0-85119903426