Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144171" target="_blank" >RIV/00216305:26210/22:PU144171 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.mdpi.com/1996-1073/15/7/2365" target="_blank" >https://www.mdpi.com/1996-1073/15/7/2365</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.3390/en15072365" target="_blank" >10.3390/en15072365</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions
Popis výsledku v původním jazyce
Modern automotive gasoline engines have highly efficient after-treatment systems that reduce exhaust gas emissions. However, this efficiency greatly depends on the conditions of the exhaust gas, mainly the temperature and air-fuel ratio. The temperature instability during transient conditions may cause a reduction in the efficiency of the three-way catalyst (TWC). By using a thermal energy storage system before TWC, this negative effect can be suppressed. In this paper, the effects of the temperature stabilization on the efficiency of the three-way catalyst were investigated on a 1-D turbocharged gasoline engine model, with a focus on fuel consumption and emissions. The thermal energy storage system (TESS) was based on PCM materials and was built in the exhaust between the turbine and TWC to use the energy of the exhaust gas. Three different materials were picked up as possible mediums in the storage system. Based on the results, the usage of a TESS in a gasoline after-treatment system has shown great potential in improving TWC efficiency. This approach can assist the catalyst to operate under optimal conditions during the drive. In this study, it was found that facilitating the heat transfer between the PCM and the catalyst can significantly improve the emissions' reduction performance by avoiding the catalyst to light out after the cold start. The TESS with PCM H430 proved to reduce the cumulative CO and HC emissions by 8.2% and 10.6%, respectively, during the drive. Although a TES system increases the after-treatment cost, it can result in emission reductions and fuel consumption over the vehicle's operating life.
Název v anglickém jazyce
Exhaust Gas Temperature Pulsations of a Gasoline Engine and Its Stabilization Using Thermal Energy Storage System to Reduce Emissions
Popis výsledku anglicky
Modern automotive gasoline engines have highly efficient after-treatment systems that reduce exhaust gas emissions. However, this efficiency greatly depends on the conditions of the exhaust gas, mainly the temperature and air-fuel ratio. The temperature instability during transient conditions may cause a reduction in the efficiency of the three-way catalyst (TWC). By using a thermal energy storage system before TWC, this negative effect can be suppressed. In this paper, the effects of the temperature stabilization on the efficiency of the three-way catalyst were investigated on a 1-D turbocharged gasoline engine model, with a focus on fuel consumption and emissions. The thermal energy storage system (TESS) was based on PCM materials and was built in the exhaust between the turbine and TWC to use the energy of the exhaust gas. Three different materials were picked up as possible mediums in the storage system. Based on the results, the usage of a TESS in a gasoline after-treatment system has shown great potential in improving TWC efficiency. This approach can assist the catalyst to operate under optimal conditions during the drive. In this study, it was found that facilitating the heat transfer between the PCM and the catalyst can significantly improve the emissions' reduction performance by avoiding the catalyst to light out after the cold start. The TESS with PCM H430 proved to reduce the cumulative CO and HC emissions by 8.2% and 10.6%, respectively, during the drive. Although a TES system increases the after-treatment cost, it can result in emission reductions and fuel consumption over the vehicle's operating life.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20704 - Energy and fuels
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
ENERGIES
ISSN
1996-1073
e-ISSN
—
Svazek periodika
15
Číslo periodika v rámci svazku
7
Stát vydavatele periodika
CH - Švýcarská konfederace
Počet stran výsledku
16
Strana od-do
1-16
Kód UT WoS článku
000780607300001
EID výsledku v databázi Scopus
2-s2.0-85127373569