Comparing the Brain Storm Optimization Algorithm on the Ambiguous Benchmark Set
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F22%3APU144875" target="_blank" >RIV/00216305:26210/22:PU144875 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/chapter/10.1007/978-3-031-09677-8_31" target="_blank" >https://link.springer.com/chapter/10.1007/978-3-031-09677-8_31</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-09677-8_31" target="_blank" >10.1007/978-3-031-09677-8_31</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Comparing the Brain Storm Optimization Algorithm on the Ambiguous Benchmark Set
Popis výsledku v původním jazyce
In the field of evolutionary computation, benchmarking has a pivotal place in both the development of novel algorithms, and in performing comparisons between existing techniques. In this paper, the computational comparison of the Brain Storm Optimization (BSO) algorithm (a swarm intelligence paradigm inspired by the behaviors of the human process of brainstorming) was performed. A selected representative of the BSO algorithms (namely, BSO20) was compared with other selected methods, which were a mix of canonical methods (both swarm intelligence and evolutionary algorithms) and state-of-the-art techniques. As a test bed, the ambiguous benchmark set was employed. The results showed that even though BSO is not among the best algorithms on this test bed, it is still a well performing method comparable to some state-of-the-art algorithms.
Název v anglickém jazyce
Comparing the Brain Storm Optimization Algorithm on the Ambiguous Benchmark Set
Popis výsledku anglicky
In the field of evolutionary computation, benchmarking has a pivotal place in both the development of novel algorithms, and in performing comparisons between existing techniques. In this paper, the computational comparison of the Brain Storm Optimization (BSO) algorithm (a swarm intelligence paradigm inspired by the behaviors of the human process of brainstorming) was performed. A selected representative of the BSO algorithms (namely, BSO20) was compared with other selected methods, which were a mix of canonical methods (both swarm intelligence and evolutionary algorithms) and state-of-the-art techniques. As a test bed, the ambiguous benchmark set was employed. The results showed that even though BSO is not among the best algorithms on this test bed, it is still a well performing method comparable to some state-of-the-art algorithms.
Klasifikace
Druh
C - Kapitola v odborné knize
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název knihy nebo sborníku
Advances in Swarm Intelligence. ICSI 2022, Part II. Lecture Notes in Computer Science, vol 13344.
ISBN
978-3-031-09726-3
Počet stran výsledku
13
Strana od-do
367-379
Počet stran knihy
548
Název nakladatele
Springer, Cham
Místo vydání
Neuveden
Kód UT WoS kapitoly
—