A novel geometric method based on conformal geometric algebra applied to the resection problem in two and three dimensions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU151458" target="_blank" >RIV/00216305:26210/24:PU151458 - isvavai.cz</a>
Výsledek na webu
<a href="https://link.springer.com/article/10.1007/s00190-024-01854-1" target="_blank" >https://link.springer.com/article/10.1007/s00190-024-01854-1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/s00190-024-01854-1" target="_blank" >10.1007/s00190-024-01854-1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A novel geometric method based on conformal geometric algebra applied to the resection problem in two and three dimensions
Popis výsledku v původním jazyce
This paper introduces a novel method for solving the resection problem in two and three dimensions based on conformal geometric algebra (CGA). Advantage is taken because of the characteristics of CGA, which enables the representation of points, lines, planes, and volumes in a unified mathematical framework and offers a more intuitive and geometric understanding of the problem, in contrast to existing purely algebraic methods. Several numerical examples are presented to demonstrate the efficacy of the proposed method and to compare its validity with established techniques in the field. Numerical simulations indicate that our vector geometric algebra implementation is faster than the best-known algorithms to date, suggesting that the proposed GA-based methods can provide a more efficient and comprehensible solution to the two- and three-dimensional resection problem, paving the way for further applications and advances in geodesy research. Furthermore, the method's emphasis on graphical and geometric representation makes it particularly suitable for educational purposes, allowing the reader to grasp the concepts and principles of resection more effectively. The proposed method has potential applications in a wide range of other fields, including surveying, robotics, computer vision, or navigation.
Název v anglickém jazyce
A novel geometric method based on conformal geometric algebra applied to the resection problem in two and three dimensions
Popis výsledku anglicky
This paper introduces a novel method for solving the resection problem in two and three dimensions based on conformal geometric algebra (CGA). Advantage is taken because of the characteristics of CGA, which enables the representation of points, lines, planes, and volumes in a unified mathematical framework and offers a more intuitive and geometric understanding of the problem, in contrast to existing purely algebraic methods. Several numerical examples are presented to demonstrate the efficacy of the proposed method and to compare its validity with established techniques in the field. Numerical simulations indicate that our vector geometric algebra implementation is faster than the best-known algorithms to date, suggesting that the proposed GA-based methods can provide a more efficient and comprehensible solution to the two- and three-dimensional resection problem, paving the way for further applications and advances in geodesy research. Furthermore, the method's emphasis on graphical and geometric representation makes it particularly suitable for educational purposes, allowing the reader to grasp the concepts and principles of resection more effectively. The proposed method has potential applications in a wide range of other fields, including surveying, robotics, computer vision, or navigation.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10102 - Applied mathematics
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
JOURNAL OF GEODESY
ISSN
0949-7714
e-ISSN
1432-1394
Svazek periodika
98
Číslo periodika v rámci svazku
6
Stát vydavatele periodika
DE - Spolková republika Německo
Počet stran výsledku
21
Strana od-do
1-21
Kód UT WoS článku
001232858200001
EID výsledku v databázi Scopus
2-s2.0-85194878758