Experimental Comparison of Hydrostatic Bearing Pad Geometry Optimization Approaches Under Static Conditions
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26210%2F24%3APU152397" target="_blank" >RIV/00216305:26210/24:PU152397 - isvavai.cz</a>
Výsledek na webu
<a href="https://doi.org/10.1007/978-3-031-70462-8_1" target="_blank" >https://doi.org/10.1007/978-3-031-70462-8_1</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-031-70462-8_1" target="_blank" >10.1007/978-3-031-70462-8_1</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Experimental Comparison of Hydrostatic Bearing Pad Geometry Optimization Approaches Under Static Conditions
Popis výsledku v původním jazyce
Hydrostatic bearings are widely used in various applications, but their continuous need for externally pressurized lubricant poses energy consumption challenges. This study aims to experimentally compare the performance of hydrostatic bearing pad geometry optimization approaches. Using a two-pad hydrostatic tester with online diagnostics, we evaluated optimized multi-recess pads derived from classical and computational fluid dynamics (CFD) approaches. Our findings reveal that the CFD approach achieves a 12% increase in film thickness and a 21% increase in recess pressure compared to the classical approach under equivalent experimental conditions. However, the enhanced performance of CFD-optimized pads comes with increased sensitivity to local overload or misalignment, as evidenced in this study. While adopting the CFD-optimized geometry promises notable reductions in energy demands, ensuring precise alignment, particularly in large-scale applications, remains critical. In conclusion, our study indicates that employing the CFD optimization approach can effectively lower the service costs of hydrostatic bearings. However, achieving optimal results requires careful attention to alignment.
Název v anglickém jazyce
Experimental Comparison of Hydrostatic Bearing Pad Geometry Optimization Approaches Under Static Conditions
Popis výsledku anglicky
Hydrostatic bearings are widely used in various applications, but their continuous need for externally pressurized lubricant poses energy consumption challenges. This study aims to experimentally compare the performance of hydrostatic bearing pad geometry optimization approaches. Using a two-pad hydrostatic tester with online diagnostics, we evaluated optimized multi-recess pads derived from classical and computational fluid dynamics (CFD) approaches. Our findings reveal that the CFD approach achieves a 12% increase in film thickness and a 21% increase in recess pressure compared to the classical approach under equivalent experimental conditions. However, the enhanced performance of CFD-optimized pads comes with increased sensitivity to local overload or misalignment, as evidenced in this study. While adopting the CFD-optimized geometry promises notable reductions in energy demands, ensuring precise alignment, particularly in large-scale applications, remains critical. In conclusion, our study indicates that employing the CFD optimization approach can effectively lower the service costs of hydrostatic bearings. However, achieving optimal results requires careful attention to alignment.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20301 - Mechanical engineering
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2024
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Latest Advancements in Mechanical Engineering. ISIEA 2024. Lecture Notes in Networks and Systems
ISBN
978-3-031-70461-1
ISSN
—
e-ISSN
—
Počet stran výsledku
11
Strana od-do
1-11
Název nakladatele
Springer
Místo vydání
neuveden
Místo konání akce
Bozen-Bolzano, Italy
Datum konání akce
18. 6. 2024
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—