Kohenen Neural Network for Image Processing. In Proceeding of the 10th International Workshop on Systems, Signals and Image Processing
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F03%3APU40201" target="_blank" >RIV/00216305:26220/03:PU40201 - isvavai.cz</a>
Výsledek na webu
—
DOI - Digital Object Identifier
—
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Kohenen Neural Network for Image Processing. In Proceeding of the 10th International Workshop on Systems, Signals and Image Processing
Popis výsledku v původním jazyce
The Kohonen network is one of the self-organizing neural networks. The number of inputs coming to neurons is equal to the number of inputs to the Kohonen network. A characteristic feature of an ART network is its ability to switch the variable and stablemode without damaging the information learned. The ART network is very sensitive to noise and failure and that is why it is not suitable for the recognition of damaged pictures. It is not necessary to solve the problem of local minimum as the ART network is always convergent to optimum solution. A real technological scene was simulated by digitizing two-dimensional pictures of real objects. The ART network gave relatively good results. Its application is suitable especially for the recognition of not very damaged and noisy pictures and in the case when other patterns are added to the learned network. The Kohonen network presented excellent results. The learning went off very quickly and that is why the Kohonen network is suitable for a
Název v anglickém jazyce
Kohenen Neural Network for Image Processing. In Proceeding of the 10th International Workshop on Systems, Signals and Image Processing
Popis výsledku anglicky
The Kohonen network is one of the self-organizing neural networks. The number of inputs coming to neurons is equal to the number of inputs to the Kohonen network. A characteristic feature of an ART network is its ability to switch the variable and stablemode without damaging the information learned. The ART network is very sensitive to noise and failure and that is why it is not suitable for the recognition of damaged pictures. It is not necessary to solve the problem of local minimum as the ART network is always convergent to optimum solution. A real technological scene was simulated by digitizing two-dimensional pictures of real objects. The ART network gave relatively good results. Its application is suitable especially for the recognition of not very damaged and noisy pictures and in the case when other patterns are added to the learned network. The Kohonen network presented excellent results. The learning went off very quickly and that is why the Kohonen network is suitable for a
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
JA - Elektronika a optoelektronika, elektrotechnika
OECD FORD obor
—
Návaznosti výsledku
Projekt
<a href="/cs/project/GA102%2F03%2F0762" target="_blank" >GA102/03/0762: Analýza přenosových parametrů xDSL systémů pomocí modelů reálných přístupových sítí</a><br>
Návaznosti
Z - Vyzkumny zamer (s odkazem do CEZ)
Ostatní
Rok uplatnění
2003
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceeding of the 10th International Workshop on Systems, Signals and Image Processing
ISBN
—
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
—
Název nakladatele
CVUT Praha
Místo vydání
Praha
Místo konání akce
Praha
Datum konání akce
10. 9. 2003
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—