Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

SCKS toolbox: Blind deconvolution of hemodynamic response

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F10%3APR24892" target="_blank" >RIV/00216305:26220/10:PR24892 - isvavai.cz</a>

  • Výsledek na webu

  • DOI - Digital Object Identifier

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    SCKS toolbox: Blind deconvolution of hemodynamic response

  • Popis výsledku v původním jazyce

    This toolbox contains implementation of square-root Cubature Kalman Filter and square-root Rauch-Tang-Striebel smoother (SCKF-SCKS). These algorithms perform joint estimation of the states, input and parameters of stochastic continuous-discrete state-space models. The state equations must have a form of ordinary differential equations, where their discretization is performed through an efficient local-linearization scheme. Additionally, the parameter noise covariance is estimated dynamicaly via stochastic Robbins-Monro approximation method, and the measurement noise covariance is estimated online as well, using combination of varitional Bayesian (VB) approach with nonlinear filter/smoother. In particular, this method was designed to perform the nonlinear blind deconvolution of hemodynamic responses from fMRI data to estimate the underlying neuronal signal.

  • Název v anglickém jazyce

    SCKS toolbox: Blind deconvolution of hemodynamic response

  • Popis výsledku anglicky

    This toolbox contains implementation of square-root Cubature Kalman Filter and square-root Rauch-Tang-Striebel smoother (SCKF-SCKS). These algorithms perform joint estimation of the states, input and parameters of stochastic continuous-discrete state-space models. The state equations must have a form of ordinary differential equations, where their discretization is performed through an efficient local-linearization scheme. Additionally, the parameter noise covariance is estimated dynamicaly via stochastic Robbins-Monro approximation method, and the measurement noise covariance is estimated online as well, using combination of varitional Bayesian (VB) approach with nonlinear filter/smoother. In particular, this method was designed to perform the nonlinear blind deconvolution of hemodynamic responses from fMRI data to estimate the underlying neuronal signal.

Klasifikace

  • Druh

    R - Software

  • CEP obor

    FH - Neurologie, neurochirurgie, neurovědy

  • OECD FORD obor

Návaznosti výsledku

  • Projekt

    <a href="/cs/project/1M0572" target="_blank" >1M0572: Data, algoritmy, rozhodování</a><br>

  • Návaznosti

    P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>Z - Vyzkumny zamer (s odkazem do CEZ)<br>S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2010

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Interní identifikační kód produktu

    SCKS

  • Technické parametry

    Software může být spuštěn v programovém prostředí Matlab na standardních PC.

  • Ekonomické parametry

  • IČO vlastníka výsledku

    00216305

  • Název vlastníka

    Ústav biomedicínského inženýrství