Optimization of Power Analysis Using Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F14%3APU109604" target="_blank" >RIV/00216305:26220/14:PU109604 - isvavai.cz</a>
Výsledek na webu
<a href="http://dx.doi.org/10.1007/978-3-319-08302-5_7" target="_blank" >http://dx.doi.org/10.1007/978-3-319-08302-5_7</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1007/978-3-319-08302-5_7" target="_blank" >10.1007/978-3-319-08302-5_7</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Optimization of Power Analysis Using Neural Network
Popis výsledku v původním jazyce
In power analysis, many different statistical methods and power consumption models are used to obtain the value of a secret key from the power traces measured. An interesting method of power analysis based on multi-layer perceptron claiming a $90%$ success rate. The theoretical and empirical success rates were determined to be $80%$ and $85%$, respectively, which is not sufficient enough. In the paper, we propose and realize an optimization of this power analysis method which improves the success rate to almost $100%$. The optimization is based on preprocessing the measured power traces using the calculation of the average trace and the subsequent calculation of the difference power traces. In this way, the prepared power patterns were used for neural network training and of course during the attack. This optimization is computationally undemanding compared to other methods of preprocessing usually applied in power analysis, and has a great impact on classification results. In the paper, we compare the results of the optimized method with the original implementation. We highlight positive and also some negative impacts of the optimization on classification results.
Název v anglickém jazyce
Optimization of Power Analysis Using Neural Network
Popis výsledku anglicky
In power analysis, many different statistical methods and power consumption models are used to obtain the value of a secret key from the power traces measured. An interesting method of power analysis based on multi-layer perceptron claiming a $90%$ success rate. The theoretical and empirical success rates were determined to be $80%$ and $85%$, respectively, which is not sufficient enough. In the paper, we propose and realize an optimization of this power analysis method which improves the success rate to almost $100%$. The optimization is based on preprocessing the measured power traces using the calculation of the average trace and the subsequent calculation of the difference power traces. In this way, the prepared power patterns were used for neural network training and of course during the attack. This optimization is computationally undemanding compared to other methods of preprocessing usually applied in power analysis, and has a great impact on classification results. In the paper, we compare the results of the optimized method with the original implementation. We highlight positive and also some negative impacts of the optimization on classification results.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/FR-TI4%2F647" target="_blank" >FR-TI4/647: *Integrační server s kryptografickým zabezpečením</a><br>
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2014
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Smart Card Research and Advanced Applications, Lecture Notes in Computer Science
ISBN
978-3-319-08302-5
ISSN
—
e-ISSN
—
Počet stran výsledku
14
Strana od-do
94-107
Název nakladatele
Springer
Místo vydání
Neuveden
Místo konání akce
Berlín
Datum konání akce
27. 11. 2013
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000348357900007