Diagnosis of eccentricity and broken rotor bar related faults of induction motor by means of motor current signature analysis
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU114253" target="_blank" >RIV/00216305:26220/15:PU114253 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/7161130?section=abstract" target="_blank" >https://ieeexplore.ieee.org/document/7161130?section=abstract</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/EPE.2015.7161130" target="_blank" >10.1109/EPE.2015.7161130</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Diagnosis of eccentricity and broken rotor bar related faults of induction motor by means of motor current signature analysis
Popis výsledku v původním jazyce
Detection of faults in electrical motors is very important for avoiding unpredicted failures of the machines. Early detection and diagnosis of faults that may occur are desirable to ensure that operational effectiveness of an induction motor can be improved. In this paper, faults detection and classification using motor current signature analysis (MCSA) are presented. A series of simulations using the models of three phase cage induction motor is performed in different fault conditions, such as static, dynamic and mixed eccentricity and broken rotor bars. Designed models were implemented with the help of finite element method to provide data that makes it possible to diagnose presence of any type of faults, as well as to analyze obtained and calculated results. Models were designed on the basis of characteristics and parameters of real motor. The results are illustrated in the form of graphs and tables that make visible illustration for effectiveness of the used diagnosis method.
Název v anglickém jazyce
Diagnosis of eccentricity and broken rotor bar related faults of induction motor by means of motor current signature analysis
Popis výsledku anglicky
Detection of faults in electrical motors is very important for avoiding unpredicted failures of the machines. Early detection and diagnosis of faults that may occur are desirable to ensure that operational effectiveness of an induction motor can be improved. In this paper, faults detection and classification using motor current signature analysis (MCSA) are presented. A series of simulations using the models of three phase cage induction motor is performed in different fault conditions, such as static, dynamic and mixed eccentricity and broken rotor bars. Designed models were implemented with the help of finite element method to provide data that makes it possible to diagnose presence of any type of faults, as well as to analyze obtained and calculated results. Models were designed on the basis of characteristics and parameters of real motor. The results are illustrated in the form of graphs and tables that make visible illustration for effectiveness of the used diagnosis method.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20201 - Electrical and electronic engineering
Návaznosti výsledku
Projekt
<a href="/cs/project/LO1210" target="_blank" >LO1210: Energie v podmínkách udržitelného rozvoje (EN-PUR)</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2015 16th International Scientific Conference on Electric Power Engineering (EPE)
ISBN
978-1-4673-6787-5
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
682-686
Název nakladatele
VSB – Technical University of Ostrava, Faculty of Electrical Engineering and Computer Science
Místo vydání
Ostrava, Czech Republic
Místo konání akce
Kouty nad Desnou
Datum konání akce
20. 5. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000377548600136