Application of the particle filters for identification of the non-Gaussian systems
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU114705" target="_blank" >RIV/00216305:26220/15:PU114705 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/7145089" target="_blank" >https://ieeexplore.ieee.org/document/7145089</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CarpathianCC.2015.7145089" target="_blank" >10.1109/CarpathianCC.2015.7145089</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Application of the particle filters for identification of the non-Gaussian systems
Popis výsledku v původním jazyce
This paper focuses on application of a particle filter for online identification of non-Gaussian systems. Firstly, the Bayesian inference was described and then the particle filter was defined. The particle filter numerically solves a problem of a recursive Bayesian state estimator. Secondly, the parameters of the linear system and two types of the non-Gaussian systems were estimated by application of the particle filter. The first system was classical linear system. The second system was the linear system with a noise which had a different probability distribution than the Gaussian distribution and the last system was the system with nonlinearity. Thirdly, the parameters of the non-Gaussian systems were estimated with the gradient based method Leveberg-Marquardt. Finally, the results from the particle filter were compared with the results from the gradient based method Levenberg-Marquardt.
Název v anglickém jazyce
Application of the particle filters for identification of the non-Gaussian systems
Popis výsledku anglicky
This paper focuses on application of a particle filter for online identification of non-Gaussian systems. Firstly, the Bayesian inference was described and then the particle filter was defined. The particle filter numerically solves a problem of a recursive Bayesian state estimator. Secondly, the parameters of the linear system and two types of the non-Gaussian systems were estimated by application of the particle filter. The first system was classical linear system. The second system was the linear system with a noise which had a different probability distribution than the Gaussian distribution and the last system was the system with nonlinearity. Thirdly, the parameters of the non-Gaussian systems were estimated with the gradient based method Leveberg-Marquardt. Finally, the results from the particle filter were compared with the results from the gradient based method Levenberg-Marquardt.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 16th International Carpathian Control Conference (ICCC2015)
ISBN
978-1-4799-7369-9
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
282-285
Název nakladatele
University of Miskolc, Hungary
Místo vydání
Szilvásvárad
Místo konání akce
Szilvásvárad
Datum konání akce
27. 5. 2015
Typ akce podle státní příslušnosti
EUR - Evropská akce
Kód UT WoS článku
000380488000055