Estimation of parameters of one-step predictor with particle filter method
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F15%3APU114708" target="_blank" >RIV/00216305:26220/15:PU114708 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405896315008186" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896315008186</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2015.07.043" target="_blank" >10.1016/j.ifacol.2015.07.043</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Estimation of parameters of one-step predictor with particle filter method
Popis výsledku v původním jazyce
This paper is focused on estimation of the parameters of a system with non-Gaussian noise. Firstly, the Bayesian inference is described and the method of the particle filters is introduced which is directly based on the Bayesian inference. The particle filters method numrically solve a problem of a recursive Bayesian state estimator. Secondly, the method for transformation of a random variables is introduced which changes the relative likelihood of the particle filters according to the distribution of the measurement noise. Thirdly, recursive least square method is derived and linear one-step predictor is described. Fourthly, parameters of the one-step predictor are estimated online with two methods that were mention before. The outputs of both methods are compared and results are discussed. The particle filters method with random variables is analyzed.
Název v anglickém jazyce
Estimation of parameters of one-step predictor with particle filter method
Popis výsledku anglicky
This paper is focused on estimation of the parameters of a system with non-Gaussian noise. Firstly, the Bayesian inference is described and the method of the particle filters is introduced which is directly based on the Bayesian inference. The particle filters method numrically solve a problem of a recursive Bayesian state estimator. Secondly, the method for transformation of a random variables is introduced which changes the relative likelihood of the particle filters according to the distribution of the measurement noise. Thirdly, recursive least square method is derived and linear one-step predictor is described. Fourthly, parameters of the one-step predictor are estimated online with two methods that were mention before. The outputs of both methods are compared and results are discussed. The particle filters method with random variables is analyzed.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2015
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
13th IFAC Conference on Programmable Devices and Embedded Systems - PDeS 2015
ISBN
—
ISSN
1474-6670
e-ISSN
—
Počet stran výsledku
6
Strana od-do
256-261
Název nakladatele
Silesian University of Technology, Poland
Místo vydání
Cracow, Poland
Místo konání akce
Krakow
Datum konání akce
13. 5. 2015
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000375804500044