Bayesian Inference of Total Least-Squares With Known Precision
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26620%2F22%3APU146344" target="_blank" >RIV/00216305:26620/22:PU146344 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9992409" target="_blank" >https://ieeexplore.ieee.org/document/9992409</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CDC51059.2022.9992409" target="_blank" >10.1109/CDC51059.2022.9992409</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Bayesian Inference of Total Least-Squares With Known Precision
Popis výsledku v původním jazyce
This paper provides a Bayesian analysis of the total least-squares problem with independent Gaussian noise of known variance. It introduces a derivation of the likelihood density function, conjugate prior probability-density function, and the posterior probability-density function. All in the shape of the Bingham distribution, introducing an unrecognized connection between orthogonal least-squares methods and directional analysis. The resulting Bayesian inference expands on available methods with statistical results. A recursive statistical identification algorithm of errors-in-variables models is laid- out. An application of the introduced inference is presented using a simulation example, emulating part of the identification process of linear permanent magnet synchronous motor drive parameters. The paper represents a crucial step towards enabling Bayesian statistical methods for problems with errors in variables.
Název v anglickém jazyce
Bayesian Inference of Total Least-Squares With Known Precision
Popis výsledku anglicky
This paper provides a Bayesian analysis of the total least-squares problem with independent Gaussian noise of known variance. It introduces a derivation of the likelihood density function, conjugate prior probability-density function, and the posterior probability-density function. All in the shape of the Bingham distribution, introducing an unrecognized connection between orthogonal least-squares methods and directional analysis. The resulting Bayesian inference expands on available methods with statistical results. A recursive statistical identification algorithm of errors-in-variables models is laid- out. An application of the introduced inference is presented using a simulation example, emulating part of the identification process of linear permanent magnet synchronous motor drive parameters. The paper represents a crucial step towards enabling Bayesian statistical methods for problems with errors in variables.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
<a href="/cs/project/TN01000024" target="_blank" >TN01000024: Národní centrum kompetence - Kybernetika a umělá inteligence</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2022
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the IEEE Conference on Decision and Control
ISBN
978-1-66-546761-2
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
IEEE
Místo vydání
neuveden
Místo konání akce
Cancún
Datum konání akce
6. 12. 2022
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—