Artificial Neural Networks in an Inertial Measurement Unit
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU119242" target="_blank" >RIV/00216305:26220/16:PU119242 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/7477431" target="_blank" >https://ieeexplore.ieee.org/document/7477431</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/RADIOELEK.2016.7477431" target="_blank" >10.1109/RADIOELEK.2016.7477431</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Artificial Neural Networks in an Inertial Measurement Unit
Popis výsledku v původním jazyce
This paper presents an effective method combining classic data processing using a simple MEMS inertial measurement unit (IMU) and an artificial neural network (AAN) to achieve more accurate pedestrian positioning. Generally, this application based on a standard IMU without support from another system, such as satellite navigation, is characterized by poorly estimating position and orientation, wherein the positioning error grows over time. The proposed approach uses an artificial neural network, which is designed to determine the status of "what is happening" with the body of the IMU. Two possible statuses are considered. The first of these is the fact that the IMU is static, regardless of its orientation, and the second state is a man walking with an IMU placed on his body. In principal, further statuses can be added to the classification results from the ANN, e.g. jogging, driving, shaking, spinning, flying, falling etc. This paper not only presents the theoretical but also a series of experiments. It has been demonstrated that the proposed approach improves personal tracking accuracy by more than ten times compared to the application of an unaided IMU.
Název v anglickém jazyce
Artificial Neural Networks in an Inertial Measurement Unit
Popis výsledku anglicky
This paper presents an effective method combining classic data processing using a simple MEMS inertial measurement unit (IMU) and an artificial neural network (AAN) to achieve more accurate pedestrian positioning. Generally, this application based on a standard IMU without support from another system, such as satellite navigation, is characterized by poorly estimating position and orientation, wherein the positioning error grows over time. The proposed approach uses an artificial neural network, which is designed to determine the status of "what is happening" with the body of the IMU. Two possible statuses are considered. The first of these is the fact that the IMU is static, regardless of its orientation, and the second state is a man walking with an IMU placed on his body. In principal, further statuses can be added to the classification results from the ANN, e.g. jogging, driving, shaking, spinning, flying, falling etc. This paper not only presents the theoretical but also a series of experiments. It has been demonstrated that the proposed approach improves personal tracking accuracy by more than ten times compared to the application of an unaided IMU.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 26th International Conference RADIOELEKTRONIKA 2016
ISBN
978-1-5090-1673-0
ISSN
—
e-ISSN
—
Počet stran výsledku
5
Strana od-do
176-180
Název nakladatele
Neuveden
Místo vydání
Neuveden
Místo konání akce
Košice
Datum konání akce
19. 4. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000383741100036