Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

Advanced image segmentation methods using partial differential equations: A concise comparison

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU121081" target="_blank" >RIV/00216305:26220/16:PU121081 - isvavai.cz</a>

  • Výsledek na webu

    <a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7734800&isnumber=7734201" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7734800&isnumber=7734201</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/PIERS.2016.7734800" target="_blank" >10.1109/PIERS.2016.7734800</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    Advanced image segmentation methods using partial differential equations: A concise comparison

  • Popis výsledku v původním jazyce

    We present a survey of state-of-the-art segmentation methods that exploit partial differential equations, focusing on techniques introduced since the year 2010. The discussed approaches are mainly those based on the active contour and level set principles. The former of the two categories comprises methods utilizing parametric curve evolution based on the energy of the image function, and the resulting contour separates the homogeneous areas. In Active contours, the curve is defined explicitly; it is directly influenced by the energy in the image. Solving the partial differential equation (PDE) which describes the curve leads us towards segmentation; such a procedure, though easily implementable, nevertheless cannot automatically cope with topological changes of the segmented object. This problem is eliminated by using the level set method, which employs explicit curve definitions via a multidimensional function. In this technique, topological changes of image objects are solved wholly naturally: during the development of the level set function, the areas join or separate, and the changes need not be monitored by other algorithms. The paper comprises a description of selected publications discussing PDE-based segmentation. One of the main reasons for the continuing development of current PDE-based methods lies in the requirement for reducing the computational intensity of the algorithms ideally down to the level of real-time processing. Moreover, problems such as the solution stability and preserving of the distance function are also being currently tackled.

  • Název v anglickém jazyce

    Advanced image segmentation methods using partial differential equations: A concise comparison

  • Popis výsledku anglicky

    We present a survey of state-of-the-art segmentation methods that exploit partial differential equations, focusing on techniques introduced since the year 2010. The discussed approaches are mainly those based on the active contour and level set principles. The former of the two categories comprises methods utilizing parametric curve evolution based on the energy of the image function, and the resulting contour separates the homogeneous areas. In Active contours, the curve is defined explicitly; it is directly influenced by the energy in the image. Solving the partial differential equation (PDE) which describes the curve leads us towards segmentation; such a procedure, though easily implementable, nevertheless cannot automatically cope with topological changes of the segmented object. This problem is eliminated by using the level set method, which employs explicit curve definitions via a multidimensional function. In this technique, topological changes of image objects are solved wholly naturally: during the development of the level set function, the areas join or separate, and the changes need not be monitored by other algorithms. The paper comprises a description of selected publications discussing PDE-based segmentation. One of the main reasons for the continuing development of current PDE-based methods lies in the requirement for reducing the computational intensity of the algorithms ideally down to the level of real-time processing. Moreover, problems such as the solution stability and preserving of the distance function are also being currently tackled.

Klasifikace

  • Druh

    D - Stať ve sborníku

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2016

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název statě ve sborníku

    2016 Progress in Electromagnetic Research Symposium (PIERS)

  • ISBN

    978-1-5090-6093-1

  • ISSN

  • e-ISSN

  • Počet stran výsledku

    4

  • Strana od-do

    1809-1812

  • Název nakladatele

    IEEE

  • Místo vydání

    Shanghai, China

  • Místo konání akce

    Shanghai

  • Datum konání akce

    8. 8. 2016

  • Typ akce podle státní příslušnosti

    WRD - Celosvětová akce

  • Kód UT WoS článku

    000400013901198