Advanced image segmentation methods using partial differential equations: A concise comparison
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F16%3APU121081" target="_blank" >RIV/00216305:26220/16:PU121081 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7734800&isnumber=7734201" target="_blank" >http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7734800&isnumber=7734201</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/PIERS.2016.7734800" target="_blank" >10.1109/PIERS.2016.7734800</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Advanced image segmentation methods using partial differential equations: A concise comparison
Popis výsledku v původním jazyce
We present a survey of state-of-the-art segmentation methods that exploit partial differential equations, focusing on techniques introduced since the year 2010. The discussed approaches are mainly those based on the active contour and level set principles. The former of the two categories comprises methods utilizing parametric curve evolution based on the energy of the image function, and the resulting contour separates the homogeneous areas. In Active contours, the curve is defined explicitly; it is directly influenced by the energy in the image. Solving the partial differential equation (PDE) which describes the curve leads us towards segmentation; such a procedure, though easily implementable, nevertheless cannot automatically cope with topological changes of the segmented object. This problem is eliminated by using the level set method, which employs explicit curve definitions via a multidimensional function. In this technique, topological changes of image objects are solved wholly naturally: during the development of the level set function, the areas join or separate, and the changes need not be monitored by other algorithms. The paper comprises a description of selected publications discussing PDE-based segmentation. One of the main reasons for the continuing development of current PDE-based methods lies in the requirement for reducing the computational intensity of the algorithms ideally down to the level of real-time processing. Moreover, problems such as the solution stability and preserving of the distance function are also being currently tackled.
Název v anglickém jazyce
Advanced image segmentation methods using partial differential equations: A concise comparison
Popis výsledku anglicky
We present a survey of state-of-the-art segmentation methods that exploit partial differential equations, focusing on techniques introduced since the year 2010. The discussed approaches are mainly those based on the active contour and level set principles. The former of the two categories comprises methods utilizing parametric curve evolution based on the energy of the image function, and the resulting contour separates the homogeneous areas. In Active contours, the curve is defined explicitly; it is directly influenced by the energy in the image. Solving the partial differential equation (PDE) which describes the curve leads us towards segmentation; such a procedure, though easily implementable, nevertheless cannot automatically cope with topological changes of the segmented object. This problem is eliminated by using the level set method, which employs explicit curve definitions via a multidimensional function. In this technique, topological changes of image objects are solved wholly naturally: during the development of the level set function, the areas join or separate, and the changes need not be monitored by other algorithms. The paper comprises a description of selected publications discussing PDE-based segmentation. One of the main reasons for the continuing development of current PDE-based methods lies in the requirement for reducing the computational intensity of the algorithms ideally down to the level of real-time processing. Moreover, problems such as the solution stability and preserving of the distance function are also being currently tackled.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2016
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
2016 Progress in Electromagnetic Research Symposium (PIERS)
ISBN
978-1-5090-6093-1
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
1809-1812
Název nakladatele
IEEE
Místo vydání
Shanghai, China
Místo konání akce
Shanghai
Datum konání akce
8. 8. 2016
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000400013901198