Image Processing Based Automated Identification of Late Blight Disease from Leaf Images of Potato Crops
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU124285" target="_blank" >RIV/00216305:26220/17:PU124285 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8076090" target="_blank" >https://ieeexplore.ieee.org/document/8076090</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2017.8076090" target="_blank" >10.1109/TSP.2017.8076090</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Image Processing Based Automated Identification of Late Blight Disease from Leaf Images of Potato Crops
Popis výsledku v původním jazyce
Late Blight is one of the most common and devastating disease for potato crops in all over the world. For less use of pesticide and to minimize loss of potato crops, identification of late blight disease is necessary. The conventional method of disease identification is based on visual assessments which is a time consuming process and involves manpower. The proposed work presents image processing based automated identification of late blight disease from leaf images. In the proposed method, adaptive thresholding is used for segmentation of disease affected area from leaf image. The threshold value is calculated using statistical features of image which makes the proposed system fully automatic and invariant under environmental conditions. The proposed method is tested on leaf images of potato crops obtained from plant village database associated with Land Grant Universities in the USA and achieved 96% accuracy. The experimental results indicate that proposed method for segmentation of disease affected area from leaf image is convincing and computationally cheap.
Název v anglickém jazyce
Image Processing Based Automated Identification of Late Blight Disease from Leaf Images of Potato Crops
Popis výsledku anglicky
Late Blight is one of the most common and devastating disease for potato crops in all over the world. For less use of pesticide and to minimize loss of potato crops, identification of late blight disease is necessary. The conventional method of disease identification is based on visual assessments which is a time consuming process and involves manpower. The proposed work presents image processing based automated identification of late blight disease from leaf images. In the proposed method, adaptive thresholding is used for segmentation of disease affected area from leaf image. The threshold value is calculated using statistical features of image which makes the proposed system fully automatic and invariant under environmental conditions. The proposed method is tested on leaf images of potato crops obtained from plant village database associated with Land Grant Universities in the USA and achieved 96% accuracy. The experimental results indicate that proposed method for segmentation of disease affected area from leaf image is convincing and computationally cheap.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20206 - Computer hardware and architecture
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)<br>S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 40th International Conference on Telecommunications and Signal Processing (TSP 2017)
ISBN
978-1-5090-3981-4
ISSN
1805-5435
e-ISSN
—
Počet stran výsledku
5
Strana od-do
758-762
Název nakladatele
Neuveden
Místo vydání
Barcelona, Španělsko
Místo konání akce
Barcelona
Datum konání akce
5. 7. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000425229000161