An Imaging Method for Automated Detection of Acrylamide in Potato Chips
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU136258" target="_blank" >RIV/00216305:26220/17:PU136258 - isvavai.cz</a>
Výsledek na webu
<a href="http://ieeexplore.ieee.org/document/8251097/?tp=&arnumber=8251097&refinements%3D4225165638%26filter%3DAND(p_IS_Number:8251011)" target="_blank" >http://ieeexplore.ieee.org/document/8251097/?tp=&arnumber=8251097&refinements%3D4225165638%26filter%3DAND(p_IS_Number:8251011)</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/UPCON.2017.8251097" target="_blank" >10.1109/UPCON.2017.8251097</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
An Imaging Method for Automated Detection of Acrylamide in Potato Chips
Popis výsledku v původním jazyce
Neurotoxin substance acrylamide is commonly formed in starchy food stuffs like potato during deep frying. This is a problem especially for small manufacturers. Conventionally identification of acrylamide is done by chemical based LC-MS analysis which is destructive, expensive procedure and may need expert manpower. Automated and non-destructive detection of such toxic substances like acrylamide in food stuffs is of great significance. The proposed work presents non-destructive imaging system for objective estimation of acrylamide in potato chips, which can be processed by most current smartphones. To find out discrimination between healthy and acrylamide affected potato chips, the area of chip (ROI) is automatically segmented from input image followed by feature analysis for machine learning. Statistical features were extracted from different components of ROI segmented color chip images. Extracted prominent features were subjected to artificial intelligence classifier for classification of healthy and acrylamide affected potato chip samples. The proposed imaging system is tested on a comprehensive dataset consisting of 84 samples and achieved 99% area under curve which is encouraging.
Název v anglickém jazyce
An Imaging Method for Automated Detection of Acrylamide in Potato Chips
Popis výsledku anglicky
Neurotoxin substance acrylamide is commonly formed in starchy food stuffs like potato during deep frying. This is a problem especially for small manufacturers. Conventionally identification of acrylamide is done by chemical based LC-MS analysis which is destructive, expensive procedure and may need expert manpower. Automated and non-destructive detection of such toxic substances like acrylamide in food stuffs is of great significance. The proposed work presents non-destructive imaging system for objective estimation of acrylamide in potato chips, which can be processed by most current smartphones. To find out discrimination between healthy and acrylamide affected potato chips, the area of chip (ROI) is automatically segmented from input image followed by feature analysis for machine learning. Statistical features were extracted from different components of ROI segmented color chip images. Extracted prominent features were subjected to artificial intelligence classifier for classification of healthy and acrylamide affected potato chip samples. The proposed imaging system is tested on a comprehensive dataset consisting of 84 samples and achieved 99% area under curve which is encouraging.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20202 - Communication engineering and systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics Engineering
ISBN
978-1-5386-3004-4
ISSN
—
e-ISSN
—
Počet stran výsledku
4
Strana od-do
487-490
Název nakladatele
IEEE
Místo vydání
Mathura, India, India
Místo konání akce
Delhi, Uttar Pradesh
Datum konání akce
26. 8. 2017
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000426124200086