Automated Visible Range Imaging Scheme to Identify Toxic Substance from Common Starchy Food
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F18%3APU129519" target="_blank" >RIV/00216305:26220/18:PU129519 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8480363" target="_blank" >https://ieeexplore.ieee.org/document/8480363</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/CIACT.2018.8480363" target="_blank" >10.1109/CIACT.2018.8480363</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Automated Visible Range Imaging Scheme to Identify Toxic Substance from Common Starchy Food
Popis výsledku v původním jazyce
Toxic substance like acrylamide is a carcinogenic compound which is generally formed in the starchy food item when heated or fried to high temperatures. In the proposed work, a computer vision technique is employed to ascertain the presence of the acrylamide in the fried potato chips. K-means clustering has been used to perform a colour based segmentation of chips pixels from background. Distinct features, like standard deviation and moment,extracted from multi-channels, are fed to a random forest classifier for proper discrimination between acrylamide content potato chips samples and normal potato chips samples.Performance of the developed algorithm is evaluated on the comprehensive database of 80 sample images of the fried potato chips. The accuracy to detect the acrylamide contained potato chips is 95.83% which encourage the use of the proposed algorithm in real time application.
Název v anglickém jazyce
Automated Visible Range Imaging Scheme to Identify Toxic Substance from Common Starchy Food
Popis výsledku anglicky
Toxic substance like acrylamide is a carcinogenic compound which is generally formed in the starchy food item when heated or fried to high temperatures. In the proposed work, a computer vision technique is employed to ascertain the presence of the acrylamide in the fried potato chips. K-means clustering has been used to perform a colour based segmentation of chips pixels from background. Distinct features, like standard deviation and moment,extracted from multi-channels, are fed to a random forest classifier for proper discrimination between acrylamide content potato chips samples and normal potato chips samples.Performance of the developed algorithm is evaluated on the comprehensive database of 80 sample images of the fried potato chips. The accuracy to detect the acrylamide contained potato chips is 95.83% which encourage the use of the proposed algorithm in real time application.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2018
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
International Conference on Computational Intelligence & Communication Technology (CICT)
ISBN
978-1-5386-0886-9
ISSN
—
e-ISSN
—
Počet stran výsledku
6
Strana od-do
1-6
Název nakladatele
2018 4th International Conference on Computational Intelligence & Communication Technology (CICT)
Místo vydání
Ghaziabad, India
Místo konání akce
San Carlos
Datum konání akce
18. 7. 2018
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000450112300038