A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F17%3APU140251" target="_blank" >RIV/00216305:26220/17:PU140251 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/7889057" target="_blank" >https://ieeexplore.ieee.org/document/7889057</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/TSP.2017.2688966" target="_blank" >10.1109/TSP.2017.2688966</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors
Popis výsledku v původním jazyce
We propose an algorithm for tracking an unknown number of targets based on measurements provided by multiple sensors. Our algorithm achieves lowcomputational complexity and excellent scalability by running belief propagation on a suitably devised factor graph. A redundant formulation of data association uncertainty and the use of "augmented target states" including binary target indicators make it possible to exploit statistical independencies for a drastic reduction of complexity. An increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. As a consequence, the complexity of our method scales only quadratically in the number of targets, linearly in the number of sensors, and linearly in the number of measurements per sensor. The performance of the method compares well with that of previously proposed methods, including methods with a less favorable scaling behavior. In particular, our method can outperform multisensor versions of the probability hypothesis density (PHD) filter, the cardinalized PHD filter, and the multi-Bernoulli filter.
Název v anglickém jazyce
A Scalable Algorithm for Tracking an Unknown Number of Targets Using Multiple Sensors
Popis výsledku anglicky
We propose an algorithm for tracking an unknown number of targets based on measurements provided by multiple sensors. Our algorithm achieves lowcomputational complexity and excellent scalability by running belief propagation on a suitably devised factor graph. A redundant formulation of data association uncertainty and the use of "augmented target states" including binary target indicators make it possible to exploit statistical independencies for a drastic reduction of complexity. An increase in the number of targets, sensors, or measurements leads to additional variable nodes in the factor graph but not to higher dimensions of the messages. As a consequence, the complexity of our method scales only quadratically in the number of targets, linearly in the number of sensors, and linearly in the number of measurements per sensor. The performance of the method compares well with that of previously proposed methods, including methods with a less favorable scaling behavior. In particular, our method can outperform multisensor versions of the probability hypothesis density (PHD) filter, the cardinalized PHD filter, and the multi-Bernoulli filter.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
Výsledek vznikl pri realizaci vícero projektů. Více informací v záložce Projekty.
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2017
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE TRANSACTIONS ON SIGNAL PROCESSING
ISSN
1053-587X
e-ISSN
1941-0476
Svazek periodika
65
Číslo periodika v rámci svazku
13
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
16
Strana od-do
3478-3493
Kód UT WoS článku
000401090900012
EID výsledku v databázi Scopus
—