Vše

Co hledáte?

Vše
Projekty
Výsledky výzkumu
Subjekty

Rychlé hledání

  • Projekty podpořené TA ČR
  • Významné projekty
  • Projekty s nejvyšší státní podporou
  • Aktuálně běžící projekty

Chytré vyhledávání

  • Takto najdu konkrétní +slovo
  • Takto z výsledků -slovo zcela vynechám
  • “Takto můžu najít celou frázi”

The Minimisation of Public Facilities With Enhanced Genetic Algorithms Using War Elimination

Identifikátory výsledku

  • Kód výsledku v IS VaVaI

    <a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU130916" target="_blank" >RIV/00216305:26220/19:PU130916 - isvavai.cz</a>

  • Výsledek na webu

    <a href="https://ieeexplore.ieee.org/document/8605307" target="_blank" >https://ieeexplore.ieee.org/document/8605307</a>

  • DOI - Digital Object Identifier

    <a href="http://dx.doi.org/10.1109/ACCESS.2019.2891424" target="_blank" >10.1109/ACCESS.2019.2891424</a>

Alternativní jazyky

  • Jazyk výsledku

    angličtina

  • Název v původním jazyce

    The Minimisation of Public Facilities With Enhanced Genetic Algorithms Using War Elimination

  • Popis výsledku v původním jazyce

    In this paper, we focus on the problem of minimising a network of state facilities that provide essential public services (schools, offices, and hospitals). The goal is to reduce the size of the network in order to minimise the costs associated with it. However, it is essential that every customer should be able to access an appropriate service centre within a reachable distance. This problem can arise in various scenarios such as a government cutting back on public service spending in remote areas or as a reaction to changing demographics (population increase/decrease). In general, this task is NP-hard which makes the problem particularly hard to scale. Therefore, for larger problems, heuristic methods must be employed to find an approximation of the optimum. To solve this problem with satisfactory results, we have presented an enhanced version of the Genetic Algorithm (GA) based on war elimination and migration operations. This modification overcomes the well-known shortcoming of GAs when the population becomes gradually more and more similar, this results in a diversity decrease which in turn leads to a sub-optimal local minimum. We test the performance of the novel algorithm against the standard heuristic benchmarks on the widely accepted Beasley OR-library dataset for optimisation problems. Finally, we provide a case study based on real-data where a municipality tries to minimise the number of schools in a region while satisfying accessibility and other region-specific constraints.

  • Název v anglickém jazyce

    The Minimisation of Public Facilities With Enhanced Genetic Algorithms Using War Elimination

  • Popis výsledku anglicky

    In this paper, we focus on the problem of minimising a network of state facilities that provide essential public services (schools, offices, and hospitals). The goal is to reduce the size of the network in order to minimise the costs associated with it. However, it is essential that every customer should be able to access an appropriate service centre within a reachable distance. This problem can arise in various scenarios such as a government cutting back on public service spending in remote areas or as a reaction to changing demographics (population increase/decrease). In general, this task is NP-hard which makes the problem particularly hard to scale. Therefore, for larger problems, heuristic methods must be employed to find an approximation of the optimum. To solve this problem with satisfactory results, we have presented an enhanced version of the Genetic Algorithm (GA) based on war elimination and migration operations. This modification overcomes the well-known shortcoming of GAs when the population becomes gradually more and more similar, this results in a diversity decrease which in turn leads to a sub-optimal local minimum. We test the performance of the novel algorithm against the standard heuristic benchmarks on the widely accepted Beasley OR-library dataset for optimisation problems. Finally, we provide a case study based on real-data where a municipality tries to minimise the number of schools in a region while satisfying accessibility and other region-specific constraints.

Klasifikace

  • Druh

    J<sub>imp</sub> - Článek v periodiku v databázi Web of Science

  • CEP obor

  • OECD FORD obor

    10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)

Návaznosti výsledku

  • Projekt

  • Návaznosti

    S - Specificky vyzkum na vysokych skolach

Ostatní

  • Rok uplatnění

    2019

  • Kód důvěrnosti údajů

    S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů

Údaje specifické pro druh výsledku

  • Název periodika

    IEEE Access

  • ISSN

    2169-3536

  • e-ISSN

  • Svazek periodika

    7

  • Číslo periodika v rámci svazku

    1

  • Stát vydavatele periodika

    US - Spojené státy americké

  • Počet stran výsledku

    11

  • Strana od-do

    9395-9405

  • Kód UT WoS článku

    000457957000001

  • EID výsledku v databázi Scopus

    2-s2.0-85061206702