The Minimisation of Public Facilities With Enhanced Genetic Algorithms Using War Elimination
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU130916" target="_blank" >RIV/00216305:26220/19:PU130916 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/8605307" target="_blank" >https://ieeexplore.ieee.org/document/8605307</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ACCESS.2019.2891424" target="_blank" >10.1109/ACCESS.2019.2891424</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
The Minimisation of Public Facilities With Enhanced Genetic Algorithms Using War Elimination
Popis výsledku v původním jazyce
In this paper, we focus on the problem of minimising a network of state facilities that provide essential public services (schools, offices, and hospitals). The goal is to reduce the size of the network in order to minimise the costs associated with it. However, it is essential that every customer should be able to access an appropriate service centre within a reachable distance. This problem can arise in various scenarios such as a government cutting back on public service spending in remote areas or as a reaction to changing demographics (population increase/decrease). In general, this task is NP-hard which makes the problem particularly hard to scale. Therefore, for larger problems, heuristic methods must be employed to find an approximation of the optimum. To solve this problem with satisfactory results, we have presented an enhanced version of the Genetic Algorithm (GA) based on war elimination and migration operations. This modification overcomes the well-known shortcoming of GAs when the population becomes gradually more and more similar, this results in a diversity decrease which in turn leads to a sub-optimal local minimum. We test the performance of the novel algorithm against the standard heuristic benchmarks on the widely accepted Beasley OR-library dataset for optimisation problems. Finally, we provide a case study based on real-data where a municipality tries to minimise the number of schools in a region while satisfying accessibility and other region-specific constraints.
Název v anglickém jazyce
The Minimisation of Public Facilities With Enhanced Genetic Algorithms Using War Elimination
Popis výsledku anglicky
In this paper, we focus on the problem of minimising a network of state facilities that provide essential public services (schools, offices, and hospitals). The goal is to reduce the size of the network in order to minimise the costs associated with it. However, it is essential that every customer should be able to access an appropriate service centre within a reachable distance. This problem can arise in various scenarios such as a government cutting back on public service spending in remote areas or as a reaction to changing demographics (population increase/decrease). In general, this task is NP-hard which makes the problem particularly hard to scale. Therefore, for larger problems, heuristic methods must be employed to find an approximation of the optimum. To solve this problem with satisfactory results, we have presented an enhanced version of the Genetic Algorithm (GA) based on war elimination and migration operations. This modification overcomes the well-known shortcoming of GAs when the population becomes gradually more and more similar, this results in a diversity decrease which in turn leads to a sub-optimal local minimum. We test the performance of the novel algorithm against the standard heuristic benchmarks on the widely accepted Beasley OR-library dataset for optimisation problems. Finally, we provide a case study based on real-data where a municipality tries to minimise the number of schools in a region while satisfying accessibility and other region-specific constraints.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
10201 - Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8)
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
IEEE Access
ISSN
2169-3536
e-ISSN
—
Svazek periodika
7
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
US - Spojené státy americké
Počet stran výsledku
11
Strana od-do
9395-9405
Kód UT WoS článku
000457957000001
EID výsledku v databázi Scopus
2-s2.0-85061206702