Approximal operator with application to audio inpainting
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137030" target="_blank" >RIV/00216305:26220/20:PU137030 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S0165168420303510" target="_blank" >https://www.sciencedirect.com/science/article/pii/S0165168420303510</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.sigpro.2020.107807" target="_blank" >10.1016/j.sigpro.2020.107807</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Approximal operator with application to audio inpainting
Popis výsledku v původním jazyce
In their recent evaluation of time-frequency representations and structured sparsity approaches to audio inpainting, Lieb and Stark (2018) have used a particular mapping as a proximal operator. This operator serves as the fundamental part of an iterative numerical solver. However, their mapping is improperly justified. The present article proves that their mapping is indeed a proximal operator, and also derives its proper counterpart. Furthermore, it is rationalized that Lieb and Stark's operator can be understood as an approximation of the proper mapping. Surprisingly, in most cases, such an approximation (referred to as the approximal operator) is shown to provide even better numerical results in audio inpainting compared to its proper counterpart, while being computationally much more effective.
Název v anglickém jazyce
Approximal operator with application to audio inpainting
Popis výsledku anglicky
In their recent evaluation of time-frequency representations and structured sparsity approaches to audio inpainting, Lieb and Stark (2018) have used a particular mapping as a proximal operator. This operator serves as the fundamental part of an iterative numerical solver. However, their mapping is improperly justified. The present article proves that their mapping is indeed a proximal operator, and also derives its proper counterpart. Furthermore, it is rationalized that Lieb and Stark's operator can be understood as an approximation of the proper mapping. Surprisingly, in most cases, such an approximation (referred to as the approximal operator) is shown to provide even better numerical results in audio inpainting compared to its proper counterpart, while being computationally much more effective.
Klasifikace
Druh
J<sub>imp</sub> - Článek v periodiku v databázi Web of Science
CEP obor
—
OECD FORD obor
20203 - Telecommunications
Návaznosti výsledku
Projekt
<a href="/cs/project/GA20-29009S" target="_blank" >GA20-29009S: Restaurace degradovaných audiosignálů založená na sluchové percepci</a><br>
Návaznosti
P - Projekt vyzkumu a vyvoje financovany z verejnych zdroju (s odkazem do CEP)
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název periodika
SIGNAL PROCESSING
ISSN
0165-1684
e-ISSN
1879-2677
Svazek periodika
179
Číslo periodika v rámci svazku
1
Stát vydavatele periodika
NL - Nizozemsko
Počet stran výsledku
8
Strana od-do
1-8
Kód UT WoS článku
000601320000003
EID výsledku v databázi Scopus
2-s2.0-85092258115