Predicting Safety Logic Device Solutions via Decision Trees and Rules Algorithms
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F20%3APU137880" target="_blank" >RIV/00216305:26220/20:PU137880 - isvavai.cz</a>
Výsledek na webu
<a href="https://ieeexplore.ieee.org/document/9257284" target="_blank" >https://ieeexplore.ieee.org/document/9257284</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1109/ICCC49264.2020.9257284" target="_blank" >10.1109/ICCC49264.2020.9257284</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting Safety Logic Device Solutions via Decision Trees and Rules Algorithms
Popis výsledku v původním jazyce
Considering the extensive data sets and statistical techniques, a digital factory (plant) embodies a branch of machine learning that has an impact on machine safety. We propose a study based on an application of decision trees and rules algorithms (JRIP, J48, Random Forest, Random Tree, and PART). Our experimental data were collected from various industrial machine safety solutions. Diverse validation techniques were employed to derive the classification performance of each method; the approach is expected to simplify the user choice of a suitable safety logic device type. In this study, the overall classification methods proportion of individual safety logic device solutions were correctly assigned by using the training-evaluated test mode, and the prediction accuracy reached 100%; further, when assessing the 5-fold cross-validation test mode, we obtained the success rate of 82% (JRIP and PART). PART as the best method was correctly assigned for the 10-fold cross-validation test mode (85%). New developments within the broad province of machine learning, including the concepts characterized in our study, may facilitate effective assessment of machine safety systems.
Název v anglickém jazyce
Predicting Safety Logic Device Solutions via Decision Trees and Rules Algorithms
Popis výsledku anglicky
Considering the extensive data sets and statistical techniques, a digital factory (plant) embodies a branch of machine learning that has an impact on machine safety. We propose a study based on an application of decision trees and rules algorithms (JRIP, J48, Random Forest, Random Tree, and PART). Our experimental data were collected from various industrial machine safety solutions. Diverse validation techniques were employed to derive the classification performance of each method; the approach is expected to simplify the user choice of a suitable safety logic device type. In this study, the overall classification methods proportion of individual safety logic device solutions were correctly assigned by using the training-evaluated test mode, and the prediction accuracy reached 100%; further, when assessing the 5-fold cross-validation test mode, we obtained the success rate of 82% (JRIP and PART). PART as the best method was correctly assigned for the 10-fold cross-validation test mode (85%). New developments within the broad province of machine learning, including the concepts characterized in our study, may facilitate effective assessment of machine safety systems.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2020
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
Proceedings of the 2020 21st International Carpathian Control Conference (ICCC)
ISBN
978-1-7281-1951-9
ISSN
—
e-ISSN
—
Počet stran výsledku
7
Strana od-do
1-7
Název nakladatele
IEEE
Místo vydání
High Tatras, Slovakia
Místo konání akce
High Tatras
Datum konání akce
27. 10. 2020
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
—