Predicting Safety Solutions via an Artificial Neural Network
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F00216305%3A26220%2F19%3APU134098" target="_blank" >RIV/00216305:26220/19:PU134098 - isvavai.cz</a>
Výsledek na webu
<a href="https://www.sciencedirect.com/science/article/pii/S2405896319326606?via%3Dihub" target="_blank" >https://www.sciencedirect.com/science/article/pii/S2405896319326606?via%3Dihub</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.1016/j.ifacol.2019.12.711" target="_blank" >10.1016/j.ifacol.2019.12.711</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Predicting Safety Solutions via an Artificial Neural Network
Popis výsledku v původním jazyce
Considering the extensive data sets and statistical techniques, Industry 4.0 embodies a branch of machine learning that has a constantly increasing impact on machine safety. We propose an preliminary study based on application of multi-layer feed-forward neural networks in machine safety solutions; the approach is expected to simplify the user choice of suitable measures and safety functions. The prediction method and factors influencing the success rate of the procedure are indicated in a safety parameter scale reflecting industrial experience with classic methods. The multilayer perceptron, a mainstream classification algorithm from the WEKA machine learning workbench, was employed in our primary dataset as a class of the feed-forward artificial neural network. Our initial experimental data were collected from various experts within the industry. The overall proportion of individual safety solutions was correctly assigned by using the training-evaluated test mode, and its prediction accuracy was 100%; further, when assessing the 5-fold cross-validation test mode, we obtained the success rate of 40%. These statistical tools could be used to assess safety PLC traceability systems, and they exhibit the potential to assist managers in decision-making as safety devices. We demonstrate that machine learning is widely usable by the expert community and might bring multiple advantages, such as reduction of the safety solution design time, major cost cutback, and engineering tool availability.
Název v anglickém jazyce
Predicting Safety Solutions via an Artificial Neural Network
Popis výsledku anglicky
Considering the extensive data sets and statistical techniques, Industry 4.0 embodies a branch of machine learning that has a constantly increasing impact on machine safety. We propose an preliminary study based on application of multi-layer feed-forward neural networks in machine safety solutions; the approach is expected to simplify the user choice of suitable measures and safety functions. The prediction method and factors influencing the success rate of the procedure are indicated in a safety parameter scale reflecting industrial experience with classic methods. The multilayer perceptron, a mainstream classification algorithm from the WEKA machine learning workbench, was employed in our primary dataset as a class of the feed-forward artificial neural network. Our initial experimental data were collected from various experts within the industry. The overall proportion of individual safety solutions was correctly assigned by using the training-evaluated test mode, and its prediction accuracy was 100%; further, when assessing the 5-fold cross-validation test mode, we obtained the success rate of 40%. These statistical tools could be used to assess safety PLC traceability systems, and they exhibit the potential to assist managers in decision-making as safety devices. We demonstrate that machine learning is widely usable by the expert community and might bring multiple advantages, such as reduction of the safety solution design time, major cost cutback, and engineering tool availability.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
20205 - Automation and control systems
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2019
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
16th IFAC Conference on Programmable Devices and Embedded Systems PDeS 2019
ISBN
—
ISSN
2405-8963
e-ISSN
—
Počet stran výsledku
6
Strana od-do
490-495
Název nakladatele
IFAC-PapersOnLine
Místo vydání
neuveden
Místo konání akce
Tatranská lomnica
Datum konání akce
29. 10. 2019
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000507495200082