Suitability of Machine Learning Methods for Prediction of Popularity on Social Media in Comparison of Different Data Sets
Identifikátory výsledku
Kód výsledku v IS VaVaI
<a href="https://www.isvavai.cz/riv?ss=detail&h=RIV%2F62690094%3A18450%2F21%3A50018796" target="_blank" >RIV/62690094:18450/21:50018796 - isvavai.cz</a>
Výsledek na webu
<a href="https://uni.uhk.cz/hed/site/assets/files/1077/proceedings_2021_1-1.pdf" target="_blank" >https://uni.uhk.cz/hed/site/assets/files/1077/proceedings_2021_1-1.pdf</a>
DOI - Digital Object Identifier
<a href="http://dx.doi.org/10.36689/uhk/hed/2021-01-025" target="_blank" >10.36689/uhk/hed/2021-01-025</a>
Alternativní jazyky
Jazyk výsledku
angličtina
Název v původním jazyce
Suitability of Machine Learning Methods for Prediction of Popularity on Social Media in Comparison of Different Data Sets
Popis výsledku v původním jazyce
The growing popularity of various social media and the use of neural networks in recent years has brought predicting opportunities in various sectors. Social networks, in conjunction with neural networks, are often used in healthcare (prediction of whether a disease occurs or symptoms return) or business (what will be the profit or error rate of the products) and are playing an important economic and marketing change in the 21st century. The aim of the presented project is to contribute to a deeper understanding of which machine learning method to use for which data set in order to ensure the best possible prediction success across different industries. A total of 10 methods were used and the success of a total of 13 data files was tested with the help of specialized software for machine learning and the Python programming language. Of all the methods tested, the highest success rate on most datasets was with the Random Forrest method. The success rate ranged from 58.38% to 98.65%. Out of the total number of 13 datasets, the Random Forrest method was 5 times the best in accuracy.
Název v anglickém jazyce
Suitability of Machine Learning Methods for Prediction of Popularity on Social Media in Comparison of Different Data Sets
Popis výsledku anglicky
The growing popularity of various social media and the use of neural networks in recent years has brought predicting opportunities in various sectors. Social networks, in conjunction with neural networks, are often used in healthcare (prediction of whether a disease occurs or symptoms return) or business (what will be the profit or error rate of the products) and are playing an important economic and marketing change in the 21st century. The aim of the presented project is to contribute to a deeper understanding of which machine learning method to use for which data set in order to ensure the best possible prediction success across different industries. A total of 10 methods were used and the success of a total of 13 data files was tested with the help of specialized software for machine learning and the Python programming language. Of all the methods tested, the highest success rate on most datasets was with the Random Forrest method. The success rate ranged from 58.38% to 98.65%. Out of the total number of 13 datasets, the Random Forrest method was 5 times the best in accuracy.
Klasifikace
Druh
D - Stať ve sborníku
CEP obor
—
OECD FORD obor
10103 - Statistics and probability
Návaznosti výsledku
Projekt
—
Návaznosti
S - Specificky vyzkum na vysokych skolach
Ostatní
Rok uplatnění
2021
Kód důvěrnosti údajů
S - Úplné a pravdivé údaje o projektu nepodléhají ochraně podle zvláštních právních předpisů
Údaje specifické pro druh výsledku
Název statě ve sborníku
HRADEC ECONOMIC DAYS, VOL 11(1)
ISBN
978-80-7435-822-7
ISSN
2464-6059
e-ISSN
2464-6067
Počet stran výsledku
9
Strana od-do
251-259
Název nakladatele
Univerzita Hradec Králové
Místo vydání
Hradec Králové
Místo konání akce
Hradec Králové
Datum konání akce
25. 3. 2021
Typ akce podle státní příslušnosti
WRD - Celosvětová akce
Kód UT WoS článku
000670596900025